Skip to main content
Log in

Thermal Diffusivity Dependence with Highly Concentrated Graphene Oxide/Water Nanofluids by Mode-Mismatched Dual-Beam Thermal Lens Technique

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The thermal properties of graphene oxide (GO) nanoparticles’ colloidal suspensions prepared using the microwave-assisted hydrothermal method were determined. The mode-mismatched dual-beam thermal lens technique was employed to measure the thermal diffusivity of GO nanoparticles for different concentrations in the base fluid. By fitting the experimental data to the theoretical expression, the characteristic time constant was determined. The thermal diffusivity of the fluids seemed to be strongly dependent on the presence of the nanoparticles, increasing from 15.02 ± 0.16 × 10−4 cm2·s−1 to 27.59 ± 0.51 × 10−4 cm2·s−1 for concentrations ranging from 0.82 %V to 4.00 %V of GO/H2O. As nanofluids concentration increased, a higher value of thermal diffusivity was obtained. The optical properties, morphology and chemical structure and functional groups of the nanoparticles were characterized by UV–Vis spectroscopy, transmission electron microscopy (TEM) and Fourier Transform infrared spectroscopy (FTIR). Two main absorption peaks at 230 nm and at 303 nm in the UV–Vis spectra were observed. TEM images revealed a uniform size distribution and spherical in shape NPs with mean diameter of 7.4 nm. This novel type of nanofluids have potential applications for heat transfer fluids like solar collectors and heat exchange systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.V. Marquezini, N. Cella, A.M. Mansanares, H. Vargas, L.C.M. Miranda, Meas. Sci. Technol. 2, 396 (1991)

    Article  ADS  Google Scholar 

  2. J. Caereles, C. Glorieux, J. Thoen, Rev. Sci. Ins. 69, 2452 (1998)

    Article  ADS  Google Scholar 

  3. S.M. Shibli, A.L.L. Dantas, A. Bee, Braz. J. Phys. 31(3), 418 (2001)

    Article  ADS  Google Scholar 

  4. M. Chirtoc, G. Milhailescu, Phys. Rev. B 40, 9606 (1980)

    Article  ADS  Google Scholar 

  5. R. Carbajal Valdez, J.L. Jiménez-Pérez, A. Cruz Orea, Z.N. Correa Pacheco, M.L. Alvarado Noguez, I.C. RomeroIbarra, J.G. Mendoza Álvarez, Thermochim. Acta 657, 66 (2017)

    Article  Google Scholar 

  6. G. López-Gamboa, J.L. Jiménez-Pérez, Z.N. Correa-Pacheco, M.L. Alvarado-Noguez, M. Amorin Lima, A. Cruz-Orea, J.G. Mendoza Alvarez, Int. J. Thermophys. 41(10), 1 (2020)

    Google Scholar 

  7. N. Sezer, M.A. Atieh, M. Koç, Powder Technol. 344, 404 (2019)

    Article  Google Scholar 

  8. X. Liu, Z. Rao, Thermochim. Acta 647, 15 (2017)

    Article  Google Scholar 

  9. J.L. Jimenez-Perez, G. Lopez Gamboa, J.F. Sanchez Ramirez, Z.N. Correa-Pacheco, V.E. Lopez Lopez, L. Tepech-Ccarrillo, Appl. Phys. A 122, 925 (2016)

    Article  ADS  Google Scholar 

  10. M. Gresil, Z. Wang, Q.A. Poutrel, C. Soutis, Sci. Rep. 7, 1 (2017)

    Article  Google Scholar 

  11. Y. Wang, C. Zou, W. Li, Y. Zou, H. Huang, Int. J. Heat Mass Tran. 156(119735), 1 (2020)

    Google Scholar 

  12. L.O. Usoltseva, M.V. Korobov, M.A. Proskurnin, J. Appl. Phys. 128(19), 190901 (2020)

    Article  ADS  Google Scholar 

  13. C. Liu, M. Chen, W. Yu, Y. He, ES Energy Environ. 2, 31 (2018)

    Google Scholar 

  14. M. Potenza, A. Cataldo, G. Bovesecchi, S. Corasaniti, P. Coppa, S. Belluci, AIP Adv. 7(075214), 1 (2017)

    Google Scholar 

  15. M.R. Rodríguez-Laguna, A. Castro-Alvarez, M. Sledzinska, J. Maire, F. Costanzo, B. Ensing, M. Pruneda, P. Ordejón, C.M. Sotomayor Torres, P. Gómez-Romero, E. Chávez-Ángel, Nanoscale 10, 15402 (2018)

    Article  Google Scholar 

  16. N. Ahammed, L. Godson Asirvatham, J. Titus, J. Raja Bose, S. Wongwises, Int. Commun. Heat Mass 70, 66 (2016)

    Article  Google Scholar 

  17. M.R. Esfahani, E.M. Languri, M.R. Nunna, Int. Commun. Heat Mass Transf. 76, 308 (2016)

    Article  Google Scholar 

  18. S. Vishnuprasad, K. Haribabu, V.T. Perarasu, Heat Mass Transf. 55, 2221 (2019)

    Article  Google Scholar 

  19. W. Hummers Jr., R. Offeman, J. Am. Chem. Soc. 80(6), 1339 (1958)

    Article  Google Scholar 

  20. H.S. Kim, T.J. Oweida, Y.G. Yingling, J. Mater. Sci. 53, 5766 (2008)

    Article  ADS  Google Scholar 

  21. M. Drosg, Dealing with Uncertainties, A Guide to Error Analysis (Springer, Berlin, 2007).

    MATH  Google Scholar 

  22. J. Shen, R.D. Lowe, R.D. Swook, Chem. Phys. 165, 385 (1992)

    Article  Google Scholar 

  23. J.L. Jiménez-Pérez, R. Gutiérrez-Fuentes, G. López-Gamboa, J.F. Sánchez-Ramírez, Z.N. Correa-Pacheco, R. Carbajal-Valdéz, Opt. Mater. 84, 236 (2018)

    Article  ADS  Google Scholar 

  24. Q. Lai, S. Zhu, X. Luo, M. Zou, S. Huang, AIP Adv. 2(031146), 1 (2012)

    Google Scholar 

  25. T. Emiru, D. Ayele, Egypt J. Basic Appl. Sci. 4, 74 (2017)

    Google Scholar 

  26. P.R.B. Pedreira, L. Hirsch, J.R.D. Pereira, A.N. Medina, A.C. Bento, M.L. Baesso, Rev. Sci. Inst. 74, 808 (2003)

    Article  ADS  Google Scholar 

  27. R.C. Weast, Handbook of Chemistry and Physics (CRC Press, Boca Raton, 1987).

    Google Scholar 

  28. V.P. Zharov, K.E. Mercer, E.N. Galitovskaya, M.S. Smeltzer, Biophys. J. 90, 619 (2006)

    Article  ADS  Google Scholar 

  29. V.P. Zharov, D.O. Lapotko, IEEE J. Sel. Top. Quant. Electron. 11, 733 (2005)

    Article  ADS  Google Scholar 

  30. V.M. Lenart, N.G.C. Astrath, R.F. Turchiello, G.F. Goya, S.L. Gómez, J. Appl. Phys. 123, 085107 (2018)

    Article  ADS  Google Scholar 

  31. L.P. Zhou, B.X. Wang, X.F. Peng, X.Z. Du, Y.P. Yang, Adv. Mech. Eng. 2, 172085 (2010)

    Article  Google Scholar 

  32. R. Bakhtiari, B. Kamkari, M. Afrand, A. Abdollahi, Powder Technol. (2021)

  33. M. Afrand, D. Toghraie, N. Sina, Int. Commun. Heat Mass Transf. 75, 62 (2016)

    Article  Google Scholar 

  34. T. Hong, H. Yang. C. J. Choi, J. Appl. Phys. 97(064311), 1 (2005)

Download references

Acknowledgments

Authors would like to thank CONACYT, COFAA, and CGPI-IPN, Mexico, for their partial financial support. Also, to the Red de Nanofotónica.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Jiménez-Pérez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiménez-Pérez, J.L., López-Gamboa, G., Sánchez-Ramírez, J.F. et al. Thermal Diffusivity Dependence with Highly Concentrated Graphene Oxide/Water Nanofluids by Mode-Mismatched Dual-Beam Thermal Lens Technique. Int J Thermophys 42, 107 (2021). https://doi.org/10.1007/s10765-021-02861-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02861-6

Keywords

Navigation