Skip to main content

Advertisement

Log in

The implementation of virtual reality in digital factory—a comprehensive review

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The global trend in manufacturing has shifted from a manufacturing-centric process toward a user-centric process. This has resulted in a shorter lifespan and a high product replacement rate of any consumer product. Germany has introduced the concept of Industry Revolution 4.0 (IR 4.0) to convert manufacturing processes and mechanisms into cyber-physical systems (CPS). Digital factory, being the first step into CPS and IR4.0, is being targeted as the most important evolution of the manufacturing industry. This paper defines digital factories and their differences between other similar domains such as smart factories, CPS, and virtual factories. The requirements and goals of a digital factory are explained in detail to facilitate future digital factory tool developments. Furthermore, the current challenges faced in the implementation of the digital factory are proposed to be approached by adapting an interoperable virtual reality technology. This paper emphasizes the usage of virtual reality (VR) in simulating a digital factory that aids in the decision-making and efficient operation of a manufacturing facility. Furthermore, recommendations gathered from previous studies for developing VR-based digital factory tools are also explained in detail in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable,

References

  1. Constantinescu C, Dürr M, Sacco M (2008) Innovative VR environment for factory and process planning: DiFac. In: 2008 IEEE International Technology Management Conference (ICE), pp 1–8

  2. Yildiz E, Møller C, Bilberg A (2020) Virtual factory: digital twin based integrated factory simulations. In: Procedia CIRP, pp 216–221. https://doi.org/10.1016/j.procir.2020.04.043

  3. Cohen Y, Faccio M, Pilati F, Yao X (2019) Design and management of digital manufacturing and assembly systems in the Industry 4.0 era. Int J Adv Manuf Technol 105:101–117

    Article  Google Scholar 

  4. Li J, Li A, Luo X, Liu X (2009) Product lifecycle-oriented virtual design method. In: 2009 International Conference on Measuring Technology and Mechatronics Automation. pp 685–688. https://doi.org/10.1109/ICMTMA.2009.549

  5. Bracht U, Masurat T (2005) The digital factory between vision and reality. Comput Ind 56(4):325–333

    Article  Google Scholar 

  6. Li D, Fasth F-BÅ, Paulin D (2019) Current and future Industry 4.0 capabilities for information and knowledge sharing: Case of two Swedish SMEs. Int J Adv Manuf Technol 105. https://doi.org/10.1007/s00170-019-03942-5

  7. Liang JS, Chao K-M, Ivey P (2013) VR-based wheeled mobile robot in application of remote real-time assembly. Int J Adv Manuf Technol 64(9):1765–1779

    Article  Google Scholar 

  8. Roblek V, Meško M, Krapež A (2016) A Complex View of Industry 4.0. SAGE Open 6. https://doi.org/10.1177/2158244016653987

  9. Darmoul S, Abidi MH, Ahmad A, Al-Ahmari AM, Darwish SM, Hussein HMA (2015) Virtual reality for manufacturing: a robotic cell case study. In: 2015 International Conference on Industrial Engineering and Operations Management (IEOM), pp 1–7. https://doi.org/10.1109/IEOM.2015.7093880

  10. Muhuri PK, Shukla AK, Abraham A (2019) Industry 4.0: A bibliometric analysis and detailed overview. Eng Appl Artif Intell 78:218–235

    Article  Google Scholar 

  11. Alcácer V, Cruz-Machado V (2019) Scanning the Industry 4.0: a literature review on technologies for manufacturing systems. Eng Sci Technolo 22(3):899–919

    Google Scholar 

  12. Qin J, Liu Y, Grosvenor R (2016) A categorical framework of manufacturing for Industry 4.0 and beyond. Procedia CIRP 52:173–178

    Article  Google Scholar 

  13. Rojas R, Rauch E (2019) From a literature review to a conceptual framework of enablers for smart manufacturing control. Int J Adv Manuf Technol 104:1–17

    Article  Google Scholar 

  14. Yahuza M, Idris MYIB, Wahab AWBA, Ho ATS, Khan S, Musa SNB, Taha AZB (2020) Systematic review on security and privacy requirements in edge computing: state of the art and future research opportunities. IEEE Access 8:76541–76567

    Article  Google Scholar 

  15. Gordon EE (2000) In: Wars S, Gordon EE (eds) Introduction. Butterworth-Heinemann, Boston, pp xv–xxi

    Google Scholar 

  16. VDI VDI (2008) 4499 Part1: Digital factory fundamentals. Beuth Verlag, Berlin

    Google Scholar 

  17. Burbules NC (2006) Rethinking the virtual. In: Weiss J et al (eds) The International Handbook of Virtual Learning Environments. Springer Netherlands, Dordrecht, pp 37–58

    Chapter  Google Scholar 

  18. Frontoni E, Loncarski J, Pierdicca R, Bernardini M, Sasso M (2018) Cyber physical systems for Industry 4.0: towards real time virtual reality in smart manufacturing. In: Augmented Reality, Virtual Reality, and Computer Graphics. Springer International Publishing, Cham

    Google Scholar 

  19. Urbas L, Krause A, Pech S, Göhner P (2011) Function allocation for multi-agent systems and middleware in industrial automation systems. In: ETFA2011, pp 1–4. https://doi.org/10.1109/ETFA.2011.6059112

  20. Zhang Y, Kwok TH (2018) Design and interaction interface using augmented reality for smart manufacturing. 26:1278–1286. https://doi.org/10.1016/j.promfg.2018.07.140

  21. Radziwon A, Bilberg A, Bogers M, Madsen ES (2014) The smart factory: exploring adaptive and flexible manufacturing solutions. Procedia Eng 69:1184–1190

    Article  Google Scholar 

  22. Cheng Y, Zhang Y, Ji P, Xu W, Zhou Z, Tao F (2018) Cyber-physical integration for moving digital factories forward towards smart manufacturing: a survey. Int J Adv Manuf Technol 97:1–13

    Article  Google Scholar 

  23. Cyber-physical systems — merging the physical and virtual worlds, in cyber-physical systems: driving force for innovation in mobility, health, energy and production. 2011, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 15-21.

  24. Reinhard R, Büscher C, Meisen T, Schilberg D, Jeschke S (2012) Virtual production intelligence – a contribution to the digital factory. Springer Berlin Heidelberg, Berlin, Heidelberg

    Book  Google Scholar 

  25. Constantinescu C (2011) Flexible integration of VR-based tools and simulation applications for the planning and optimization of factories and manufacturing processes. In: Digital Factory for Human-oriented Production Systems: The Integration of International Research Projects, Springer, London, pp 187–200. https://doi.org/10.1007/978-1-84996-172-1_11

  26. Sacco M, Dal Maso G, Milella F, Pedrazzoli P, Rovere D, Terkaj W (2011) Virtual factory manager. Springer Berlin Heidelberg, Berlin, Heidelberg

    Book  Google Scholar 

  27. Azevedo A, Almeida A (2011) Factory templates for digital factories framework. Robot Comput Integr Manuf 27(4):755–771

    Article  Google Scholar 

  28. Bicocchi N, Cabri G, Mandreoli F, Mecella M (2019) Dynamic digital factories for agile supply chains: an architectural approach. J Ind Inf Integr. https://doi.org/10.1016/j.jii.2019.02.001

  29. Horbach S, Ackermann J, Müller E, Schütze J (2011) Building blocks for adaptable factory systems. Robot Comput Integr Manuf 27(4):735–740

    Article  Google Scholar 

  30. Bloch H, Fay A, Hoernicke M (2016) Analysis of service-oriented architecture approaches suitable for modular process automation. In: 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA), pp 1–8. https://doi.org/10.1109/ETFA.2016.7733651

  31. Mishima N, Kondoh S, Ashida K, Nakano S (2010) A study on eco-efficiency of a downsized modular manufacturing system by considering flexibility. In: 2010 IEEE International Conference on Mechatronics and Automation

    Google Scholar 

  32. Terkaj W, Gaboardi P, Trevisan C, Tolio T, Urgo M (2019) A digital factory platform for the design of roll shop plants. CIRP J Manuf Sci Technol 26:88–93

    Article  Google Scholar 

  33. Fathi M, Holland A (2009) Knowledge-based feedback integration to facilitate sustainable product innovation. In: 2009 IEEE Conference on Emerging Technologies & Factory Automation, pp 1–8. https://doi.org/10.1109/ETFA.2009.5347018

  34. Giovannini A, Aubry A, Panetto H, Dassisti M, Haouzi HE (2012) Knowledge-based system for manufacturing sustainability. IFAC Proc Vol 45(6):1333–1338

    Article  Google Scholar 

  35. Chen D, Kjellberg T, von Euler A (2010) Software tools for the digital factory – an evaluation and discussion. Springer Berlin Heidelberg, Berlin, Heidelberg

    Book  Google Scholar 

  36. Shariatzadeh N, Lundholm T, Lindberg L, Sivard G (2016) Integration of digital factory with smart factory based on internet of things. Procedia CIRP 50:512–517

    Article  Google Scholar 

  37. Kühn W (2006) Digital factory - integration of simulation enhancing the product and production process towards operative control and optimization, vol 7

    Google Scholar 

  38. Sacco M, Redaelli C, Cândea C, Georgescu AV (2009) DiFac: an integrated scenario for the digital factory. In: 2009 IEEE International Technology Management Conference (ICE), pp 1–8. https://doi.org/10.1109/ITMC.2009.7461380

  39. Peruzzini M, Grandi F, Cavallaro S, Pellicciari M (2020) Using virtual manufacturing to design human-centric factories: an industrial case. Int J Adv Manuf Technol, p 1–15. https://doi.org/10.1007/s00170-020-06229-2

  40. Pedrazzoli P, Sacco M, Jönsson A, Boër CR (2007) Virtual factory framework: key enabler for future manufacturing. Springer US, Boston, MA

    Google Scholar 

  41. Tao F, Zhang M, Nee AYC (2019) Chapter 11 - Digital twin and virtual reality and augmented reality/mixed reality. In: Digital twin driven smart manufacturing. Academic Press, pp 219–241. https://doi.org/10.1016/B978-0-12-817630-6.00011-4

  42. Xiong W, Wang Q-H, Huang Z-D, Xu Z-J (2016) A framework for interactive assembly task simulation in virtual environment. Int J Adv Manuf Technol 85(5):955–969

    Article  Google Scholar 

  43. Xia P, Lopes AM, Restivo MT, Yao Y (2012) A new type haptics-based virtual environment system for assembly training of complex products. Int J Adv Manuf Technol 58(1):379–396

    Article  Google Scholar 

  44. Sun S-H, Tsai L-Z (2012) Development of virtual training platform of injection molding machine based on VR technology. Int J Adv Manuf Technol 63:609–620

    Article  Google Scholar 

  45. Phoon S-Y, Yap HJ, Taha Z, Pai YS (2017) Interactive solution approach for loop layout problem using virtual reality technology. Int J Adv Manuf Technol 89:2375–2385

    Article  Google Scholar 

  46. Conges A, Evain A, Benaben F, Chabiron O, RebiÈRe S (2020) Crisis management exercises in virtual reality. In: 2020 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), pp 87–92. https://doi.org/10.1109/VRW50115.2020.00022

  47. Mihelj M, Novak D, Begus S (2012) Introduction to virtual reality. In: Virtual Reality Technology and Applications. Springer, Netherlands, Dordrecht, pp 1–16. https://doi.org/10.1007/978-94-007-6910-6_1

  48. Oyekan JO, Hutabarat W, Tiwari A, Grech R, Aung MH, Mariani MP, López-Dávalos L, Ricaud T, Singh S, Dupuis C (2019) The effectiveness of virtual environments in developing collaborative strategies between industrial robots and humans. Robot Comput Integr Manuf 55:41–54

    Article  Google Scholar 

  49. Nee AYC, Ong SK (2013) Virtual and augmented reality applications in manufacturing. IFAC Proc Vol 46(9):15–26

    Article  Google Scholar 

  50. Banerjee PP (2009) Virtual reality and automation. In: Nof SY (ed) Springer Handbook of Automation. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 269–278

    Chapter  Google Scholar 

  51. Abidi MH, Ahmad A, Darmoul S, Al-Ahmari AM (2015) Haptics assisted virtual assembly. IFAC-PapersOnLine 48(3):100–105

    Article  Google Scholar 

  52. Yang S-M, Ahn B, Seo K-K (2006) Development of a prototype customer-oriented virtual factory system. Int J Adv Manuf Technol 28:1031–1037

    Article  Google Scholar 

  53. Bal M, Hashemipour M (2007) Applications of virtual reality in design and simulation of holonic manufacturing systems: a demonstration in die-casting industry. In: International Conference on Industrial Applications of Holonic and Multi-Agent Systems. Springer Berlin Heidelberg, Berlin, Heidelberg

    Google Scholar 

  54. Li F, Sun J, Yang Q (2011) Design and research of virtual assembly system based on OSG. In: 2011 Second International Conference on Digital Manufacturing & Automation

    Google Scholar 

  55. Mavrikios D, Pappas M, Kotsonis M, Karabatsou V, Chryssolouris G (2007) Digital humans for virtual assembly evaluation. In: Digital Human Modeling. Springer Berlin Heidelberg, Berlin, Heidelberg

    Google Scholar 

  56. Wu Y-F, Zhang Y, Shen J-W, Peng T (2013) The virtual reality applied in construction machinery industry. In: Virtual, Augmented and Mixed Reality. Systems and Applications. Springer Berlin Heidelberg, Berlin, Heidelberg

    Google Scholar 

  57. Guo Z, Zhou D, Zhou Q, Zhang X, Geng J, Zeng S, Lv C, Hao A (2020) Applications of virtual reality in maintenance during the industrial product lifecycle: a systematic review. J Manuf Syst 56:525–538

    Article  Google Scholar 

  58. Dhuieb MA, Laroche F, Bernard A (2013) Digital factory assistant: conceptual framework and research propositions. Springer Berlin Heidelberg, Berlin, Heidelberg

    Google Scholar 

  59. Souza MCF, Sacco M, Porto AJV (2006) Virtual manufacturing as a way for the factory of the future. J Intell Manuf 17(6):725–735

    Article  Google Scholar 

  60. Waller AP, Ladbrook J (2002) Experiencing virtual factories of the future. In: Winter Simulation Conference Proceedings. IEEE, pp 513–517. https://doi.org/10.1109/WSC.2002.1172924

  61. Menck N, Yang X, Weidig C, Winkes P, Lauer C, Hagen H, Hamann B, Aurich JC (2012) Collaborative factory planning in virtual reality. Procedia CIRP 3:317–322

    Article  Google Scholar 

  62. Bellalouna F (2020) New approach for digital factory using virtual reality technology. Procedia CIRP 93:256–261

    Article  Google Scholar 

  63. Menck N, Weidig C, Aurich JC (2013) Virtual reality as a collaboration tool for factory planning based on scenario technique. Procedia CIRP 7:133–138

    Article  Google Scholar 

  64. Delbrügger T, Meißner M, Wirtz A, Biermann D, Myrzik J, Rossmann J, Wiederkehr P (2019) Multi-level simulation concept for multidisciplinary analysis and optimization of production systems. Int J Adv Manuf Technol 103(9):3993–4012

    Article  Google Scholar 

  65. Lu CJJ, Tsai KH, Yang JCS, Wang Y (1998) A virtual testbed for the life-cycle design of automated manufacturing facilities. Int J Adv Manuf Technol 14(8):608–615

    Article  Google Scholar 

  66. Huang Z, Chen D, Wang M (2017) Design and application of intelligent patrol system based on virtual reality. In: 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp 1194–1199. https://doi.org/10.1109/ROBIO.2017.8324580

  67. Sun W-W, Lu J-F, Li D-Z (2013) Augmented reality based factory model comparison method. In: The 19th International Conference on Industrial Engineering and Engineering Management. Springer, Berlin Heidelberg, pp 1421–1426. https://doi.org/10.1007/978-3-642-38391-5_150

  68. Tyagi PS, Vadrevu S (2015) Immersive virtual reality to vindicate the application of value stream mapping in an US-based SME. Int J Adv Manuf Technol 81:1259–1272

    Article  Google Scholar 

  69. Yew AWW, Ong SK, Nee AYC (2017) Immersive augmented reality environment for the teleoperation of maintenance robots. Procedia CIRP 61:305–310

    Article  Google Scholar 

  70. Crespo R, Garcia R, Quiroz S (2015) Virtual reality simulator for robotics learning. In: 2015 International Conference on Interactive Collaborative and Blended Learning (ICBL). IEEE, pp 61–65. https://doi.org/10.1109/ICBL.2015.7387635

  71. Dahl M, Albo A, Eriksson J, Pettersson J, Falkman P (2017) Virtual reality commissioning in production systems preparation. In: 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). IEEE, pp 1–7. https://doi.org/10.1109/ETFA.2017.8247581

  72. Ladeveze N, Fourquet J-Y, Puel B (2010) Interactive path planning for haptic assistance in assembly tasks. Comput Graph 34(1):17–25

    Article  Google Scholar 

  73. Canuto da Silva G, Kaminski P (2016) Selection of virtual and physical prototypes in the product development process. Int J Adv Manuf Technol 84:1513–1530. https://doi.org/10.1007/s00170-015-7762-2

  74. Jezernik A, Hren G (2003) A solution to integrate computer-aided design (CAD) and virtual reality (VR) databases in design and manufacturing processes. Int J Adv Manuf Technol 22(11):768–774

    Article  Google Scholar 

  75. Bonsignorio F, Molfino R (2006) An object based virtual reality simulation tool for design validation of a new paradigm manufacturing facility. In: Information Technology For Balanced Manufacturing Systems. Springer US, Boston, MA

    Google Scholar 

  76. Bruno F, Caruso F, Li K, Milite A, Muzzupappa M (2009) Dynamic simulation of virtual prototypes in immersive environment. Int J Adv Manuf Technol 43:620–630

    Article  Google Scholar 

  77. Deviprasad, Kesavadas T (2003) Virtual prototyping of assembly components using process modeling. J Manuf Syst 22:16–27

    Article  Google Scholar 

  78. Viganò GP, Greci L, Mottura S, Sacco M (2011) GIOVE virtual factory: a new viewer for a more immersive role of the user during factory design. In: Canetta L, Redaelli C, Flores M (eds) Digital Factory for Human-oriented Production Systems: The Integration of International Research Projects. Springer London, London, pp 201–216

    Chapter  Google Scholar 

  79. Abidi M, Al-Ahmari A, Ahmad A, Ameen W, Alkhalefah H (2019) Assessment of virtual reality-based manufacturing assembly training system. Int J Adv Manuf Technol 105:3743–3759

    Article  Google Scholar 

  80. Chandra Sekaran S, Yap HJ, Liew KE, Kamaruzzaman H, Tan CH, Rajab RS (2019) 7 - Haptic-based virtual reality system to enhance actual aerospace composite panel drilling training. In: Jawaid M, Thariq M, Saba N (eds) Structural Health Monitoring of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites. Woodhead Publishing, pp 113–128

  81. Riemann T, Kreß A, Roth L, Klipfel S, Metternich J, Grell P (2020) Agile implementation of virtual reality in learning factories. Procedia Manuf 45:1–6

    Article  Google Scholar 

  82. Michalos G, Makris S, Tsarouchi P, Guasch T, Kontovrakis D, Chryssolouris G (2015) Design considerations for safe human-robot collaborative workplaces. Procedia CIRP 37:248–253

    Article  Google Scholar 

  83. Laseinde OT, Adejuyigbe SB, Mpofu K, Campbell HM (2015) Educating tomorrows engineers: reinforcing engineering concepts through virtual reality (VR) teaching aid. In: 2015 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), pp 1485–1489. https://doi.org/10.1109/IEEM.2015.7385894

  84. Matsas E, Vosniakos G-C, Batras D (2017) Effectiveness and acceptability of a virtual environment for assessing human–robot collaboration in manufacturing. Int J Adv Manuf Technol 92(9):3903–3917

    Article  Google Scholar 

  85. Wang QY, Tian L (2007) A systematic approach for 3D VRML model-based assembly in Web-based product design. Int J Adv Manuf Technol 33(7):819–836

    Article  Google Scholar 

  86. Fu J, Yuan W, Tang W, Tang N, Peng Y (2011) Study on realization of dynamic interaction with CAD complex model in virtual reality system. In: 2011 Second International Conference on Digital Manufacturing & Automation, pp 1168–1171. https://doi.org/10.1109/ICDMA.2011.287

  87. Barbieri L, Bruno F, Caruso F, Muzzupappa M (2008) Innovative integration techniques between virtual reality systems and CAx tools. Int J Adv Manuf Technol 38(11):1085–1097

    Article  Google Scholar 

  88. Duarte Filho N, Botelho S, Carvalho J, de Botelho Marcos P, Maffei R, Oliveira R, Oliveira R, Hax V (2010) An immersive and collaborative visualization system for digital manufacturing. Int J Adv Manuf Technol 50:1253–1261

    Article  Google Scholar 

  89. Weidig C, Menck N, Winkes PA, Aurich JC (2014) Virtual learning factory on VR-supported factory planning. Springer Berlin Heidelberg, Berlin, Heidelberg

    Book  Google Scholar 

  90. Xu Z, Shan Z, Lentes H (2010) Virtual production line based on lightning. In: International Conference on Advanced Technology of Design and Manufacture (ATDM 2010), pp 115–120. https://doi.org/10.1049/cp.2010.1271

  91. Covaciu F, Pisla A, Carbone G, Puskas F, Vaida C, Pisla D (2018) VR interface for cooperative robots applied in dynamic environments. In: 2018 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), pp 1–6. https://doi.org/10.1109/AQTR.2018.8402734

  92. Sun H, Duan X, Tan C, Yao X (2010) Key technologies of 3DVR digital information platform for shearer. In: 2010 International Conference on Mechanic Automation and Control Engineering, pp 224–227. https://doi.org/10.1109/MACE.2010.5535658

  93. Gong L, Söderlund H, Bogojevic L, Chen X, Berce A, Fast-Berglund Å, Johansson B (2020) Interaction design for multi-user virtual reality systems: an automotive case study. Procedia CIRP 93:1259–1264

    Article  Google Scholar 

  94. Wu P, Qi M, Gao L, Zou W, Miao Q, Liu L (2019) Research on the virtual reality synchronization of workshop digital twin. In: 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC)

    Google Scholar 

  95. Modoni GE, Caldarola EG, Sacco M, Terkaj W (2019) Synchronizing physical and digital factory: benefits and technical challenges. Procedia CIRP 79:472–477

    Article  Google Scholar 

  96. Breckle T, Kiesel M, Kiefer J, Beisheim N (2019) The evolving digital factory – new chances for a consistent information flow. Procedia CIRP 79:251–256

    Article  Google Scholar 

  97. Müller E, Horbach S (2012) Building blocks in an experimental and digital factory. Springer Berlin Heidelberg, Berlin, Heidelberg

    Book  Google Scholar 

  98. de Giorgio A, Romero M, Onori M, Wang L (2017) Human-machine collaboration in virtual reality for adaptive production engineering. Procedia Manuf 11:1279–1287

    Article  Google Scholar 

  99. Dürr M, Eichelberger H, Constantinescu C (2008) Approach and development of an innovative tool for integration of immersive devices in virtual manufacturing environments: immersive integrator. In: 2008 IEEE International Technology Management Conference (ICE)

    Google Scholar 

  100. Redaelli C, Santopietro M, Sacco M, Lawson G, Cruz MD (2008) The contributions of presence and ergonomics to the digital factory. In: 2008 IEEE International Technology Management Conference (ICE), pp 1–8

Download references

Funding

This research was funded by the University of Malaya Impact Oriented Interdisciplinary Research Grant Programme, IIRG (Grant no. IIRG001A-19IISS)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwa Jen Yap.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandra Sekaran, S., Yap, H.J., Musa, S.N. et al. The implementation of virtual reality in digital factory—a comprehensive review. Int J Adv Manuf Technol 115, 1349–1366 (2021). https://doi.org/10.1007/s00170-021-07240-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-07240-x

Keywords

Navigation