Skip to main content
Log in

Friction stir welding of AA2024-T3: development of numerical simulation considering thermal history and heat generation

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper proposes a finite element model implemented in ANSYS using Lagrangian formulation to assess heat generation and friction dynamics of a friction stir welding process on AA2024-T3 aluminum plates. For that aim, the model is enriched by estimating a temperature-dependent friction coefficient using theoretical relationships, and by considering a temperature-dependent multilinear isotropic hardening equation as a plasticity model representing the material. Both quantitative determinations are confirmed through experimental data collected on the real material. Finally, the contact conditions are modeled using the modified Coulomb criterion. The results of the model are in agreement with actual results observed on experimental applications. The study proves that the rotational speed of the tool is the most determinant factor in the results. As it rises, the friction-generated heat flow is higher. This study shows that the compressive stress-strain data in strain rate of 10s−1 is a good approximation of the plasticity behavior of aluminum alloy during the friction stir welding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. Threadgill PL, Leonard AJ, Shercliff HR, Withers PJ (2009) Friction stir welding of aluminium alloys. International. Materials Reviews 54(2):49–93. https://doi.org/10.1179/174328009X411136

    Article  Google Scholar 

  2. Schmidt H, Hattel J, Wert J (2003) An analytical model for the heat generation in friction stir welding. Model Simul Mater Sci Eng 12(1):143. https://doi.org/10.1088/0965-0393/12/1/013

    Article  Google Scholar 

  3. Nandan R, DebRoy T, Bhadeshia HK (2008) Recent advances in friction-stir welding–process, weldment structure and properties. Prog Mater Sci 53(6):980–1023. https://doi.org/10.1016/j.pmatsci.2008.05.001

    Article  Google Scholar 

  4. Lambiase F, Grossi V, Paoletti A (2019) Advanced mechanical characterization of friction stir welds made on polycarbonate. Int J Adv Manuf Technol 104(5):2089–2102. https://doi.org/10.1007/s00170-019-04006-4

    Article  Google Scholar 

  5. Huang Y, Meng X, Xie Y, Wan L, Lv Z, Cao J, Feng J (2018) Friction stir welding/processing of polymers and polymer matrix composites. Compos A: Appl Sci Manuf 105:235–257. https://doi.org/10.1016/j.compositesa.2017.12.005

    Article  Google Scholar 

  6. Vakili-Tahami F, Adibeig MR, Hassanifard S (2019) Optimizing creep lifetime of friction stir welded PMMA pipes subjected to combined loadings using rheological model. Polym Test 79:106049. https://doi.org/10.1016/j.polymertesting.2019.106049

    Article  Google Scholar 

  7. Adibeig MR, Hassanifard S, Vakili-Tahami F, Hattel JH (2018) Experimental investigation of tensile strength of friction stir welded butt joints on PMMA. Materials Today Communications 17:238–245. https://doi.org/10.1016/j.mtcomm.2018.09.009

    Article  Google Scholar 

  8. Eslami S, Miranda JF, Mourão L, Tavares PJ, Moreira PMGP (2018) Polyethylene friction stir welding parameter optimization and temperature characterization. Int J Adv Manuf Technol 99(1):127–136. https://doi.org/10.1007/s00170-018-2504-x

    Article  Google Scholar 

  9. Rahmi M, Abbasi M (2017) Friction stir vibration welding process: modified version of friction stir welding process. Int J Adv Manuf Technol 90(1-4):141–151. https://doi.org/10.1007/s00170-016-9383-9

    Article  Google Scholar 

  10. Abbasi M, Givi M, Ramazani A (2019) Friction stir vibration processing: a new method to improve the microstructure and mechanical properties of Al5052/SiC surface nanocomposite layer. Int J Adv Manuf Technol 100(5-8):1463–1473. https://doi.org/10.1007/s00170-018-2783-2

    Article  Google Scholar 

  11. Zhu Z, Wang M, Zhang H, Zhang X, Yu T, Wu Z (2017) A finite element model to simulate defect formation during friction stir welding. Metals 7(7):256. https://doi.org/10.3390/met7070256

    Article  Google Scholar 

  12. Soundararajan V, Zekovic S, Kovacevic R (2005) Thermo-mechanical model with adaptive boundary conditions for friction stir welding of Al 6061. Int J Mach Tools Manuf 45(14):1577–1587. https://doi.org/10.1016/j.ijmachtools.2005.02.008

    Article  Google Scholar 

  13. Song M, Kovacevic R (2003) Thermal modeling of friction stir welding in a moving coordinate system and its validation. Int J Mach Tools Manuf 43(6):605–615. https://doi.org/10.1016/S0890-6955(03)00022-1

    Article  Google Scholar 

  14. Zhu XK, & Chao YJ (2004) Numerical simulation of transient temperature and residual stresses in friction stir welding of 304L stainless steel. J Mater Process Technol 46(2): 263-272.10.1016/j.jmatprotec.2003.10.025

  15. Schmidt HB, Hattel JH (2008) Thermal modelling of friction stir welding. Scr Mater 58(5):332–337. https://doi.org/10.1016/j.scriptamat.2007.10.008

    Article  Google Scholar 

  16. Chao YJ, Qi X, Tang W (2003) Heat transfer in friction stir welding—experimental and numerical studies. J Manuf Sci Eng 125(1):138–145. https://doi.org/10.1115/1.1537741

    Article  Google Scholar 

  17. Chen CM, Kovacevic R (2003) Finite element modeling of friction stir welding—thermal and thermomechanical analysis. Int J Mach Tools Manuf 43(13):1319–1326. https://doi.org/10.1016/S0890-6955(03)00158-5

    Article  Google Scholar 

  18. Hamilton C, Sommers A, Dymek S (2009) A thermal model of friction stir welding applied to Sc-modified Al–Zn–Mg–Cu alloy extrusions. Int J Mach Tools Manuf 49(3-4):230–238. https://doi.org/10.1016/j.ijmachtools.2008.11.004

    Article  Google Scholar 

  19. Khandkar MZH, Khan JA, Reynolds AP (2003) Prediction of temperature distribution and thermal history during friction stir welding: input torque-based model. Sci Technol Weld Join 8(3):165–174. https://doi.org/10.1179/136217103225010943

    Article  Google Scholar 

  20. Colegrove PA, Shercliff HR, Zettler R (2007) Model for predicting heat generation and temperature in friction stir welding from the material properties. Sci Technol Weld Join 12(4):284–297. https://doi.org/10.1179/174329307X197539

    Article  Google Scholar 

  21. Colegrove PA, Shercliff HR (2006) CFD modelling of friction stir welding of thick plate 7449 aluminium alloy. Sci Technol Weld Join 11(4):429–441. https://doi.org/10.1179/174329306X107700

    Article  Google Scholar 

  22. Ulysse P (2002) Three-dimensional modeling of the friction stir-welding process. Int J Mach Tools Manuf 42(14):1549–1557. https://doi.org/10.1016/S0890-6955(02)00114-1

    Article  Google Scholar 

  23. Heurtier P, Jones M, Desrayaud C, Driver JH, Montheillet F, Allehaux D (2006) Mechanical and thermal modelling of friction stir welding. J Mater Process Technol 171(3):348–357. https://doi.org/10.1016/j.jmatprotec.2005.07.014

    Article  Google Scholar 

  24. De Saracibar CA, Chiumenti M, Cervera M, Dialami N, Seret A (2014) Computational modeling and sub-grid scale stabilization of incompressibility and convection in the numerical simulation of friction stir welding processes. Archives of Computational Methods in Engineering 21(1):3–37. https://doi.org/10.1007/s11831-014-9094-z

    Article  MathSciNet  MATH  Google Scholar 

  25. Bussetta P, Dialami N, Chiumenti M, Agelet de Saracibar C, Cervera M, Ponthot JP (2015) 3D numerical models of FSW processes with non-cylindrical pin. Advances in Materials and Processing Technologies 1(3-4):275–287. https://doi.org/10.1080/2374068X.2015.1121035

    Article  Google Scholar 

  26. Meyghani B, Awang MB, Emamian S, Akinlabi ET (2018) A comparison between temperature dependent and constant young's modulus values in investigating the effect of the process parameters on thermal behaviour during friction stir welding. Mater Werkst 49(4):427–434. https://doi.org/10.1002/mawe.201700255

    Article  Google Scholar 

  27. Song P, Li W, Wang X, Xu W (2019) Study on mechanical properties and constitutive model of 5052 aluminium alloy. Mater Sci Technol 35(8):916–924. https://doi.org/10.1080/02670836.2019.1596611

    Article  Google Scholar 

  28. Su H, Wu CS, Pittner A, Rethmeier M (2014) Thermal energy generation and distribution in friction stir welding of aluminum alloys. Energy 77:720–731. https://doi.org/10.1016/j.energy.2014.09.045

    Article  Google Scholar 

  29. Rasaee S, Mirzaei AH (2019) Constitutive Modeling of 2024 Aluminum Alloy Based on the Johnson–Cook Model. Trans Indian Inst Metals 72(4):1023–1030. https://doi.org/10.1007/s12666-019-01576-5

    Article  Google Scholar 

  30. Trimble D, O'DONNELL GE (2016) Flow stress prediction for hot deformation processing of 2024Al-T3 alloy. Trans Nonferrous Metals Soc China 26(5):1232–1250. https://doi.org/10.1016/S1003-6326(16)64194-8

    Article  Google Scholar 

  31. Mijajlović MM, Pavlović NT, Jovanović SV, Jovanović DS, Milčić MD (2012) Experimental studies of parameters affecting the heat generation in friction stir welding process. Therm Sci 16(2):351–362. https://doi.org/10.2298/TSCI120430174M

    Article  Google Scholar 

  32. Meyghani B, Awang M, Emamian S, Khalid NM (2017) Developing a finite element model for thermal analysis of friction stir welding by calculating temperature dependent friction coefficient. In 2nd international conference on mechanical, manufacturing and process plant engineering, Singapore 107-126. https://doi.org/10.1007/978-981-10-4232-4_9

  33. Mishra RS, Ma ZY (2005) Friction stir welding and processing Materials science and engineering: R: reports 50(1-2):1-7810. 1016/j.mser.2005.07.001

  34. Chang CI, Lee CJ, Huang JC (2004) Relationship between grain size and Zener–Holloman parameter during friction stir processing in AZ31 Mg alloys. Scr Mater 51(6):509–514. https://doi.org/10.1016/j.scriptamat.2004.05.043

    Article  Google Scholar 

  35. Chen ZW, Cui S (2009) Strain and strain rate during friction stir welding/processing of Al-7Si-0.3 Mg alloy. In IOP Conference Series: Materials Science and Engineering 4(1):012026. https://doi.org/10.1088/1757-899X/4/1/012026

    Article  Google Scholar 

  36. Masaki K, Sato YS, Maeda M, Kokawa H (2008) Experimental simulation of recrystallized microstructure in friction stir welded Al alloy using a plane-strain compression test. Scr Mater 58(5):355–360. https://doi.org/10.1016/j.scriptamat.2007.09.056

    Article  Google Scholar 

  37. Arora A, Zhang Z, De A, DebRoy T (2009) Strains and strain rates during friction stir welding. Scr Mater 61(9):863–866. https://doi.org/10.1016/j.scriptamat.2009.07.015

    Article  Google Scholar 

  38. Khan NZ, Bajaj D, Siddiquee AN, Khan ZA, Abidi MH, Umer U, Alkhalefah H (2019) Investigation on Effect of Strain Rate and Heat Generation on Traverse Force in FSW of Dissimilar Aerospace Grade Aluminium Alloys. Materials 12(10):1641. https://doi.org/10.3390/ma12101641

    Article  Google Scholar 

  39. Zhang P, Guo N, Chen G, Meng Q, Dong C, Zhou L, Feng J (2014) Plastic deformation behavior of the friction stir welded AA2024 aluminum alloy. Int J Adv Manuf Technol 74(5-8):673–679. https://doi.org/10.1007/s00170-014-6031-0

    Article  Google Scholar 

  40. APDL (2017) ANSYS Mechanical. "Release 14.0, ANSYS".

  41. Thompson MK, & Thompson JM (2017) ANSYS mechanical APDL for finite element analysis. Butterworth-Heinemann.

  42. Carlone P, Palazzo GS (2013) Influence of process parameters on microstructure and mechanical properties in AA2024-T3 friction stir welding. Metallography, Microstructure, and Analysis 2(4):213–222. https://doi.org/10.1007/s13632-013-0078-4

    Article  Google Scholar 

  43. Handbook M. (1998) MIL-HDBK-5H metallic materials and elements for aerospace vehicle structures,1st ed. US :US Department of Defense. https://idoc.pub/documents/mil-hdbk-5hpdf-pqn8mdwowp41

  44. Barron RF, & Barron BR (2011) Design for thermal stresses. John Wiley & Sons10.1002/9781118093184.app3

  45. Handbook M. (1990) Vol. 2-Properties and Selection Nonferrous Alloys and Special-Purpose Mater. ASM Inter, Ohio10.31399/asm.hb.v02.9781627081627

  46. Dadi SSO, Patel C, & Naidu BA (2020) Effect of friction-stir welding parameters on the welding temperature. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.10.364

  47. Lipski A, Mroziński S (2012) The effects of temperature on the strength properties of aluminium alloy 2024-T3. acta mechanica et automatica 6:62-66. http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BPB2-0068-0033

  48. Aziz SB, Dewan MW, Huggett DJ, Wahab MA, Okeil AM, Liao TW (2018) A fully coupled thermomechanical model of friction stir welding (FSW) and numerical studies on process parameters of lightweight aluminum alloy joints. Acta Metallurgica Sinica (English letters) 31(1):1–18. https://doi.org/10.1007/s40195-017-0658-4

    Article  Google Scholar 

  49. Jain R, Pal SK, Singh SB (2018) Finite element simulation of pin shape influence on material flow, forces in friction stir welding. Int J Adv Manuf Technol 94(5):1781–1797. https://doi.org/10.1007/s00170-017-0215-3

    Article  Google Scholar 

  50. Riahi M, Nazari H (2011) Analysis of transient temperature and residual thermal stresses in friction stir welding of aluminum alloy 6061-T6 via numerical simulation. Int J Adv Manuf Technol 55(1-4):143–152. https://doi.org/10.1007/s00170-010-3038-z

    Article  Google Scholar 

  51. Hodowany J, Ravichandran G, Rosakis AJ, Rosakis P (2000) Partition of plastic work into heat and stored energy in metals. Exp Mech 40(2):113–123. https://doi.org/10.1007/BF02325036

    Article  MATH  Google Scholar 

  52. Peel MJ, Steuwer A, Withers PJ, Dickerson T, Shi Q, Shercliff H (2006) Dissimilar friction stir welds in AA5083-AA6082. Part I: process parameter effects on thermal history and weld properties. Metall Mater Trans A 37(7):2183–2193. https://doi.org/10.1007/BF02586138

    Article  Google Scholar 

  53. Chen G, Shi Q, Feng Z (2015) On the Material Behavior at Tool/Workpiece Interface During Friction Stir Welding: A CFD Based Numerical Study in Friction Stir Welding and Processing VIII. Springer 251-258. https://doi.org/10.1007/978-3-319-48173-9_27

  54. Liu X, Yu Y, Yang S, & Liu H (2020) A modified analytical heat source model for numerical simulation of temperature field in friction stir welding. Advances in Materials Science and Engineering 2020. https://doi.org/10.1155/2020/4639382

  55. Yau YH, Hussain A, Lalwani RK, Chan HK, Hakimi N (2013) Temperature distribution study during the friction stir welding process of Al2024-T3 aluminum alloy. Int J Miner Metall Mater 20(8):779–787. https://doi.org/10.1007/s12613-013-0796-2

    Article  Google Scholar 

  56. Kalemba I, Hamilton C, Dymek S (2014) Natural aging in friction stir welded 7136-T76 aluminum alloy. Mater Des 60:295–301. https://doi.org/10.1016/j.matdes.2014.04.009

    Article  Google Scholar 

  57. Elmetwally HT, SaadAllah HN, Abd-Elhady MS, Abdel-Magied RK (2020) Optimum combination of rotational and welding speeds for welding of Al/Cu-butt joint by friction stir welding. Int J Adv Manuf Technol 110(1):163–175. https://doi.org/10.1007/s00170-020-05815-8

    Article  Google Scholar 

  58. Bastier A, Maitournam MH, Dang Van K, Roger F (2006) Steady state thermomechanical modelling of friction stir welding. Sci Technol Weld Join 11(3):278-288 https://doi.org/10.1179/174329306X102093

  59. Murariu A, Veljić DM, Barjaktarević DR, Rakin MP, Radović NA, Sedmak AS, Đoković JM (2016) Influence of material velocity on heat generation during linear welding stage of friction stir welding. Therm Sci 20(5):1693-1701 10.2298/TSCI150904217M

  60. Reynolds AP, Lockwood WD, & Seidel TU (2000) Processing-property correlation in friction stir welds. In Materials science forum Trans Tech Publications Ltd 331:1719-1724 10.4028/www.scientific.net/MSF.331-337.1719

Download references

Funding

Financial support for this study was provided by the Iran Ministry of Science Research and Technology, which is greatly appreciated.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, S.H., M.Z., J.A.T.-R., and R.J.-M.; Methodology, R.J., M.Z., C.A. and J.A.T-R; Software, S.H. and C.A.; Validation, C.A., J.A.T.-R., and R.J.-M.; Formal Analysis, C.A., J.A.T.-R., and R.J.-M.; Investigation, R.J.-M., J.A.T.-R., and C.A.; Resources, J.A.T.-R., and R.J.-M.; Data Curation, S.H., M.Z., and C.A.; Writing-Original Draft Preparation, C.A.; Writing-Review & Editing, J.A.T.-R., and R.J.-M.; Visualization, C.A., S.H., and M.Z.; Supervision, S.H., M.Z., J.A.T.-R., and R.J.-M.; Project Administration, J.A.T.-R., Funding Acquisition, J.A.T.-R., R.J.-M.

Corresponding author

Correspondence to Cyrus Amini.

Ethics declarations

Ethics approval

This manuscript has not be submitted to another journal for simultaneous consideration. The submitted work is original and not have been published elsewhere in any form or language (partially or in full).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amini, C., Hasanifard, S., Zehsaz, M. et al. Friction stir welding of AA2024-T3: development of numerical simulation considering thermal history and heat generation. Int J Adv Manuf Technol 117, 2481–2500 (2021). https://doi.org/10.1007/s00170-021-07184-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-07184-2

Keywords

Navigation