Skip to main content
Log in

Effect of magnetic field on the motion of two rigid spheres embedded in porous media with slip surfaces

  • Regular Article - Flowing Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

A semi-analytical study for the Stokes flow approximation caused by two solid spheres of different sizes with slip surfaces, immersed in a porous medium in the presence of a transverse magnetic field, is investigated. The two spheres are translating with different velocities along the line joining their centers. A general solution is developed from the superposition of the essential solutions in two spherical frameworks with origins located at the centers of the two spheres. Numerical results for the normalized hydrodynamic drag force acting on each sphere are obtained with good convergence for various values of the Hartmann number which characterizes the presence of magnetic field, the permeability parameter which characterizes the porous medium, separation parameter, and velocity and size ratios of the spheres. Our drag results are in good agreement with the available solutions in the literature in the cases of no-slip surfaces and when the porous medium turns into a pure fluid.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. P.A. Davidson, An Introduction to Magnetohydrodynamics (Cambridge University Press, Cambridge, 2010)

    MATH  Google Scholar 

  2. J. Hartmann, Theory of the Laminar flow of an electrically conductive liquid in a homogeneous magnetic field. Math Phys. Med. 15(6), 10 (1937)

    Google Scholar 

  3. J. Hartmann, F. Lazarus, Experimental investigations on the flow of mercury in a homogeneous magnetic field. Hg-Dynamics II, Kong Dansk Vide Se, Math-f Med 15(7), 145 (1937)

    Google Scholar 

  4. H.B. Rosenstock, T.A. Chubb, Translational motion of a sphere in a magnetic field. Am. J. Phys. 24, 413 (1956)

    Article  ADS  Google Scholar 

  5. H.K. Moffatt, Magnetic eddies in an incompressible viscous fluid of high electrical conductivity. J. Fluid Mech. 10, 225–239 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  6. H.H. Sherief, M.S. Faltas, S. EI-Sapa, Pipe flow of a magneto micropolar fluids with slip. Can. J. Phys. 95(10), 885–893 (2017)

  7. S. El-Sapa, Effect of magnetic field on a microstretch fluid drop embedded in an unbounded another microstretch fluid. Eur. J. Mech. B. Fluids 85, 169–180 (2020)

    Article  MathSciNet  Google Scholar 

  8. N. Rudraiah, B.K. Ramaiah, B.M. Rajasekhar, Hartmann flow over a permeable bed. Int. J. Eng. Sci. 13, 1–24 (1975)

    Article  Google Scholar 

  9. S. Deo, A. Filippov, A. Tiwari, S. Vasin, V. Starov, Hydrodynamic permeability of aggregates of porous particles with an impermeable core. Adv. Colloid Interface Sci. 164, 21–37 (2011)

    Article  Google Scholar 

  10. W. Ehlers, J. Bluhm, Porous Media: Theory, Experiments and Numerical Applications (Springer, Berlin, 2002)

    Book  Google Scholar 

  11. K. Vafai, Handbook of Porous Media (Taylor & Francis, New York, 2015)

    Book  Google Scholar 

  12. M.S. Faltas, E.I. Saad, S. El-Sapa, Slip-Brinkman flow through corrugated microannulus with stationary random roughness. Transp. Porous Media 116, 533–566 (2017)

  13. S. El-Sapa, Effect of permeability of brinkman flow on thermophoresis of a particle in a spherical cavity. Eur. J. Mech. B. Fluids 79, 315–323 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  14. E.A. Ashmawy, Steady rotation of an axially symmetric porous particle about its axis of revolution in a viscous fluid using Brinkman model. Eur. J. Mech. B/Fluids 50, 147–155 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  15. L. Durlofsky, J.F. Brady, Analysis of the Brinkman equation as a model for flow in porous media. Phys. Fluids 30(11), 3329–3341 (1987)

    Article  ADS  Google Scholar 

  16. P.K. Yadav, S. Deo, S.P. Singh, A. Filippov, Effect of magnetic field on the hydrodynamic permeability of a membrane built up by porous spherical particles. Colloid J. 79(1), 160–171 (2017)

    Article  Google Scholar 

  17. I.A. Ansari, S. Deo, Magnetohydrodynamic viscous fluid flow past a porous sphere embedded in another porous medium. Spec. Top. Rev. Porous Media Int. J. 9(2), 191–200 (2018)

    Article  Google Scholar 

  18. E.I. Saad, Magnetic fields effect on a porous sphere in a nonconcentric spherical cell. J. Porous Media 24(4), 1–18 (2021)

    Article  Google Scholar 

  19. M.K. Prasad, T. Bucha, Effect of magnetic field on the steady viscous fluid flow around a semipermeable spherical particle. Int. J. Appl. Comput. Math. 5, Article number: 98 (2019)

  20. M.S. Faltas, S. El-Sapa, Brinkman Cross-Couette flow between two plates with surface roughness. J. Porous Media 24(4), 1–18 (2021)

    Article  Google Scholar 

  21. C.L.M.H. Navier, Memoirs de l’Academie Royale des Sciences de l’Institut de France 1, 414–416 (1823)

  22. J.C. Maxwell, On stresses in rarified gases arising from inequalities of temperature. Philos. Trans. R. Soc. Lond. 170, 231–256 (1879)

    ADS  MATH  Google Scholar 

  23. J. Barrat, L. Bocquet, Large slip effect at a non wetting fluid-solid interface. Phys. Rev. Lett. 82, 4671–4674 (1999)

    Article  ADS  Google Scholar 

  24. C.J. Lawrence, S. Weinbaum, The force on an axisymmetric body in linearized, time-dependent motion: a new memory term. J. Fluid Mech. 171, 209–218 (1986)

    Article  ADS  Google Scholar 

  25. J. Feng, P. Ganatos, S. Weinbaum, Motion of a sphere near planar confining boundaries in a Brinkman medium. J. Fluid Mech. 375, 265–296 (1998)

    Article  ADS  Google Scholar 

  26. Sherief, H.H., Faltas, M.S., El-Sapa, S., Interaction between two rigid spheres moving in a micropolar fluid with slip surfaces. J. Mol. Liq. 290 (111165) (2019)

  27. S.H. Chen, H.J. Keh, Axisymmetric motion of two spherical particles with slip surfaces. J. Colloid Interface Sci. 171, 63–72 (1995)

    Article  ADS  Google Scholar 

  28. S. El-Sapa, E.I. Saad, M.S. Faltas, Axisymmetric motion of two spherical particles in a Brinkman medium with slip surfaces. Eur. J. Mech. B Fluids 67, 306–313 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  29. M.S. Faltas, H.H. Sherief, E.A. Ashmawy, Interaction of two spherical particles rotating in a micropolar fluid. Math. Comput. Model. 56, 229–239 (2012)

    Article  MathSciNet  Google Scholar 

  30. E.A. Ashmawy, Hydrodynamic interaction between two rotating spheres in an incompressible couple stress fluid. Eur. J. Mech. B Fluids 72, 364–373 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  31. H.H. Sherief, M.S. Faltas, S. El-Sapa, Axisymmetric creeping motion caused by a spherical particle in a micropolar fluid within a nonconcentric spherical cavity. Eur. J. Mech. B Fluids 77, 211–220 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  32. T.H. Shehadeh, E.A. Ashmawy, Interaction of two rigid spheres translating collinearly in a couple stress fluid. Eur. J. Mech. B Fluids 78, 284–290 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  33. H.H. Sherief, M.S. Faltas, S. El-Sapa, Force on a spherical particle oscillating in a viscous fluid perpendicular to an impermeable planar wall. J. Braz. Soc. Mech. Sci. Eng. 41(2), 10 (2019)

    Google Scholar 

  34. S. El-Sapa, Solutions of Some Boundary Value Problems in Microfluids (LAP Lambert Academic Publishing, Chisinau, 2021), p. 256

    Google Scholar 

  35. D.J. Jeffrey, Y. Onishi, Calculation of the resistance and mobility functions for two unequal rigid spheres in low-Reynolds number flow. J. Fluid Mech. 139, 261–290 (1984)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Deanship of Scientific Research at  Princess  Nourah  bint  Abdulrahman University through the Fast-track Research Funding Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shreen El-Sapa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Sapa, S., Alsudais, N.S. Effect of magnetic field on the motion of two rigid spheres embedded in porous media with slip surfaces. Eur. Phys. J. E 44, 68 (2021). https://doi.org/10.1140/epje/s10189-021-00073-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-021-00073-2

Navigation