Skip to main content
Log in

A Model-Based Study of Phytoplankton Condition Using Remote Sensing Data for the Western Kamchatka Shelf

  • ORIGINAL PAPERS
  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

A method for estimating the integral microalgae biomass beneath a unit surface was designed based on a mathematical model for phytoplankton vital function in the water column and subsequently tested. The model was verified based on data collected during field studies. The results of remote sensing allow extending this method to cover large territories (areas of water). The phytoplankton abundance in the waters of the western Kamchatka shelf in a cold year was compared to that in a warm year using satellite-derived data. It has been found that in the northern part of the shelf the total phytoplankton biomass in the cold year of 2016 was generally higher than that in the warm year of 2015. According to the assessments, as confirmed by data from the literature, this may be caused by the dynamics in the phytoplankton species structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Abakumov, A.I. and Pak, S.Ya., Model methods of phytoplankton assessment and primary production calculation in the Sea of Japan from satellite data, Vestn. Dal’nevost. Otd. Ross. Akad. Nauk, 2016, no. 4, pp. 78–86.

  2. Abakumov, A.I., Pak, S.Ya., Morozov, M.A., and Tynybekov, A.K., Model estimation of the phytoplankton biomass of Lake Issyk-Kul using remote sensing data, Inland Water Biol., 2019, vol. 12, pp. 111–118.

    Article  Google Scholar 

  3. Avramenko, A.S., Cherepanova, M.V., Pushkar’, V.S., and Yarusova, S.B., Diatom characteristics of the Far East siliceous organogenic deposits, Geol. Geofiz., 2015, vol. 56, no. 6, pp. 1206–1220.

    Google Scholar 

  4. Gail, M.M., Spring phytoplankton of the southeastern Tatar Strait, Izv. Tikhookean. Nauchno-Issled. Inst. Rybn. Khoz. Okeanogr., 1963, vol. 49, pp. 137–158.

    Google Scholar 

  5. Gladyshev, S.V., Gladyshev, V.S., Pautova, L.A., et al., The structure and long-term variability of the bottom layer in the Irminger Sea, Dokl. Earth Sci., 2018, vol. 481, pp. 1025–1028.

    Article  CAS  Google Scholar 

  6. Dinamicheskaya teoriya biologicheskikh populyatsii (The Dynamic Theory of Biological Populations), Poluektov, R.A., Ed., Moscow: Nauka, 1974.

    Google Scholar 

  7. Doklad ob ekologicheskoi situatsii v Kamchatskom kraye v 2016 godu (Report on the Environmental Situation in Kamchatka Krai in 2016), Petropavlovsk-Kamchatsky: Minist. Prir. Resur. Kamchatskogo Kraya, 2017.

  8. Elizarova, V.A., Chlorophyll as an indicator of phytoplankton biomass, in Metodicheskiye voprosy izucheniya pervichnoi produktsii planktona vnutrennikh vodoemov (Methodological Issues of Studying the Plankton Primary Production in Inland Bodies of Water), St. Petersburg: Gidrometeoizdat, 1993, pp. 126–131.

  9. Zhizn’ rastenii (Plants’ Life), Takhtadzhyan, A.L., Ed., 6 vols., Moscow: Prosveshcheniye, 1974.

    Google Scholar 

  10. Kolomeytsev, V.V., Classification of winter hydrological conditions in the Okhotsk Sea and the western Kamchatka region of the Okhotsk Sea according to satellite monitoring, Issled. Vodn. Biol. Resur. Kamchatki Sev.-Zapadn. Chasti Tikhogo Okeana, 2016, vol. 41, pp. 81–88.

    Google Scholar 

  11. Konovalova, G.V., Planktonic flora of coastal waters of Eastern Kamchatka. Flagellate algae, Tr. Kamchatskogo Fil. Tikhookean. Inst. Geogr. Dal’nevost. Otd. Ross. Akad. Nauk, 2004, vol. 5, pp. 131–182.

    Google Scholar 

  12. Konovalova, G.V., Orlova, T.Yu., and Pautova, L.A., Atlas fitoplanktona Yaponskogo morya (Atlas of Phytoplankton in the Sea of Japan), Leningrad: Nauka, 1989.

  13. Lepskaya, E.V., Summer phytoplankton of the northern part of west Kamchatkan shelf in 2008, Issled. Vodn. Biol. Resur. Kamchatki Sev.-Zapadn. Chasti Tikhogo Okeana, 2015, vol. 36, pp. 87–98.

    Google Scholar 

  14. Lepskaya, E.V., Kolomeytsev, V.V., Tepnin, O.B., and Koval, M.V., The midsummer phytoplankton on the south-west coast of Kamchatka in 2007, Issled. Vodn. Biol. Resur. Kamchatki Sev.-Zapadn. Chasti Tikhogo Okeana, 2009, vol. 15, pp. 21–33.

    Google Scholar 

  15. Luchin, V.A. and Kruts, A.A., Properties of cores of the water masses in the Okhotsk Sea, Izv. Tikhookean. Nauchno-Issled. Inst. Rybn. Khoz. Okeanogr., 2016, vol. 184, pp. 204–218.

    Google Scholar 

  16. Informatsionnyi byulleten’: “Monitoring sostoyaniya okruzhayushchei sredy na Zapadno-Kamchatskom litsenzionnom uchastke v 2015–2016 gg.” (Information Bulletin: “Environmental Monitoring at the Zapadno-Kamchatsky License Area in 2015–2016”), Krasnoyarsk: OOO Gazprom Geologorazvedka, 2015.

  17. Morozov, M.A. and Fomin, E.V., A software tool for rapid visual analysis of satellite images, in Materialy konferentsii “Matematicheskoye modelirovaniye i informatsionnye tekhnologii v issledovaniyakh bioresursov Mirovogo okeana” (Proc. Conf. “Mathematical Modeling and Information Technologies in Surveys of World Oceans’ Bioresources”), Vladivostok: TINRO-Tsentr, 2004, pp. 59–61.

  18. Ovchinnikova, S.I., Shirokaya, T.A., and Pashkina, O.I., Main trends in variations in hydrochemical parameters of the Kola Bay aquatic ecosystem (2000–2011), Vestn. Murm. Gos. Tekh. Univ., 2012, vol. 15, no. 3, pp. 544–550.

    Google Scholar 

  19. Orlova, T.Yu., Shevchenko, O.G., and Gogorev, R.M., The genus Chaetoceros (Bacillariophyta) in the Far Eastern seas of Russia, Bot. Zh., 2003, vol. 88, no. 1, pp. 52–58.

    Google Scholar 

  20. Rass, T.S., Comprehensive studies of the waters of the Northern Kuril Islands and the Kronotsky Bay (Kamchatka), Tr. Inst. Okeanol. im. P. P. Shirshova, Akad. Nauk SSSR, 1959, vol. 36, pp. 282–297.

    Google Scholar 

  21. Shevchenko, O.G. and Orlova, T.Yu., Complexes of dominant species of Chaetoceros (Bacillariophyta) in the Far Eastern seas of Russia, Bot. Zh., 2003, vol. 88, no. 8, pp. 37–41.

    Google Scholar 

  22. Abakumov, A., Izrailsky, Yu., and Park, S., Chapter 15 – Functioning of the phytoplankton in seas and estimates of primary production for aquatic ecosystems, Dev. Environ. Modell., 2015, vol. 27, pp. 339–349.

    Book  Google Scholar 

  23. Cleve, P.T., Examination of diatoms found on the surface of the Sea of Java, Bihang K. Sven. Vetenskaps-Akad. Handl., 1873, vol. 1, no. 11, pp. 1–13.

    Google Scholar 

  24. Gebühr, C., Wiltshire, K.H., Aberle, N., et al., Influence of nutrients, temperature, light and salinity on the occurrence of Paralia sulcata at Helgoland Roads, North Sea, Aquat. Biol., 2009, vol. 7, pp. 185–197.

  25. Hirt, C. and Rexer, M., Earth2014: 1 arc-min shape, topography, bedrock and ice-sheet models – Available as gridded data and degree-10,800 spherical harmonics, Int. J. Appl. Earth Obs. Geoinformation, 2015, no. 39, pp. 103–112. https://doi.org/10.1016/j.jag.2015.03.001

  26. Hobson, L.A. and McQuoid, M.R., Temporal variations among planktonic diatom assemblages in a turbulent environment of the southern Strait of Georgia, British Columbia, Canada, Mar. Ecol.: Prog. Ser., 1997, vol. 150, pp. 263–274.

    Article  Google Scholar 

  27. Hop, H., Pearson, T., Nøst Hegseth, E., et al., The marine ecosystem of Kongsfjorden, Svalbard, Polar Res., 2002, vol. 21, no. 1, pp. 167–208.

    Article  Google Scholar 

  28. Hu, S., Zhou, W., Wang, G., et al., Comparison of satellite-derived phytoplankton size classes using in-situ measurements in the South China Sea, Remote Sens., 2018, vol. 10, no. 4, art. ID 526. https://doi.org/10.3390/rs10040526

    Article  Google Scholar 

  29. Huseby, S., Degerlund, M., Eriksen, G.K., et al., Chemical diversity as a function of temperature in six northern diatom species, Mar. Drugs, 2013, vol. 11, pp. 4232–4245.

    Article  Google Scholar 

  30. Jørgensen, S.E., Lake Management, Water Development, Supply and Management, vol. 14, Oxford: Pergamon, 1980.

  31. Kawasaki, K., Nogi, Y., Hishinuma, M., et al., Psychromonas marina sp. nov., a novel halophilic, facultatively psychrophilic bacterium isolated from the coast of the Okhotsk Sea, Int. J. Syst. Evol. Microbiol., 2002, vol. 52, no. 5, pp. 1455–1459.

    PubMed  Google Scholar 

  32. Klausmeier, C.A. and Litchman, E., Algal games: The vertical distribution of phytoplankton in poorly mixed water columns, Limnol. Oceanogr., 2001, vol. 46, no. 8, pp. 1998–2007.

    Article  Google Scholar 

  33. Mock, T. and Junge, K., Psychrophilic diatoms: mechanisms for survival in freeze-thaw cycles, in Algae and Cyanobacteria in Extreme Environments, Netherlands: Springer-Verlag, 2007, pp. 343–364.

    Google Scholar 

  34. Monod, J., The growth of bacterial cultures, Annu. Rev. Microbiol., 1949, vol. 3, pp. 371–394.

    Article  CAS  Google Scholar 

  35. Pak, S.Ya. and Abakumov, A.I., Mapping of model estimates of phytoplankton biomass from remote sensing data, in Information Technologies in the Research of Biodiversity, Springer Proceedings in Earth and Environmental Sciences, Cham, Switzerland: Springer-Verlag, 2019, pp. 73–79.

  36. Raymont, J.E.G., Plankton and Productivity in the Oceans, vol. 1: Phytoplankton, 2nd ed., Oxford: Pergamon, 1980.

    Google Scholar 

  37. Ryabov, A.B., Rudolf, L., and Blasius, B., Vertical distribution and composition of phytoplankton under the influence of an upper mixed layer, J. Theor. Biol., 2010, vol. 263, no. 1, p. 120.

    Article  Google Scholar 

  38. Sammartino, M., Marullo, S., Santoleri, R., and Scardi, M., Modelling the vertical distribution of phytoplankton biomass in the Mediterranean Sea from satellite data: A neural network approach, Remote Sens., 2018, vol. 10, art. ID 1666. https://doi.org/10.3390/rs10101666

    Article  Google Scholar 

  39. Determination of photosynthetic pigments: Report of SCOR-Unesco Working Group 17, in Determination of Photosynthetic Pigments in Sea-Water, Monographs on Oceanologic Methodology, vol. 1, Paris: UNESCO, 1966, pp. 9–18.

  40. Uitz, J., Claustre, H., Morel, A., and Hooker, S.B., Vertical distribution of phytoplankton communities in open ocean: An assessment based on surface chlorophyll, J. Geophys. Res.: Oceans, 2006, vol. 111, no. C8, art. ID C08005. https://doi.org/10.1029/2005JC003207

    Article  Google Scholar 

  41. Werner, D., The Biology of Diatoms, Botanical Monograph, vol. 13, Oxford: Blackwell, 1977.

  42. Yumoto, I., Hirota, K., Sogabe, Y., et al., Psychrobacter okhotskensis sp. nov., a lipase-producing facultative psychrophile isolated from the coast of the Okhotsk Sea, Int. J. Syst. Evol. Microbiol., 2003, vol. 53, no. 6, pp. 1985–1989.

    Article  CAS  Google Scholar 

  43. Zong, Y., Implications of Paralia sulcata abundance in Scottish isolation basins, Diatom Res., 1997, vol. 12, pp. 125–150.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to the Multiple Access Center for Satellite Monitoring of the Environment, Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Sciences, for collecting data and to the Computer Graphics Laboratory, Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Sciences, for digitizing and converting the topographic material.

Funding

The study was supported in part by the Russian Foundation for Basic Research (grant no. 18-01-00213) and by the Far East Integrated Program for Basic Scientific Research (project no. 18-5-051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ya. Pak.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by E. Shvetsov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pak, S.Y., Abakumov, A.I. & Morozov, M.A. A Model-Based Study of Phytoplankton Condition Using Remote Sensing Data for the Western Kamchatka Shelf. Russ J Mar Biol 47, 143–149 (2021). https://doi.org/10.1134/S1063074021020085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063074021020085

Keywords:

Navigation