Skip to main content
Log in

The first record of the genus Lamellibrachia (Siboglinidae) tubeworm along with associated organisms in a chemosynthetic ecosystem from the Indian Ocean: A report from the Cauvery–Mannar Basin

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Here, we report for the first time, the genus Lamellibrachia tubeworm and associated chemosynthetic ecosystem from a cold-seep site in the Indian Ocean. The discovery of cold-seep was made off the Cauvery–Mannar Basin onboard ORV Sindhu Sadhana (SSD-070; 13th to 22nd February 2020). The chemosymbiont bearing polychaete worm is also associated with squat lobsters (Munidposis sp.) and Gastropoda belonging to the family Buccinidae. Relict shells of chemosynthetic Calyptogena clams are ubiquitous at the seep sites. The Lamellibrachia tubes were found to be firmly anchored into the authigenic carbonate crusts. The authigenic carbonate crusts (chemoherm) are packed with large Calyptogena shells (whole shell and fragments). Very high concentrations (3800–12900 µM) of hydrogen sulfide (H2S) in the interstitial waters (40 cmbsf) is responsible for the sustenance of chemosymbiont bearing tubeworms. The posterior end of the tube penetrates downwards into the H2S-rich zone. The high concentration of H2S at ~40 cmbsf is attributed to sulfate reduction via anaerobic oxidation of methane (AOM) pathway. Methane hydrate was observed within the faults/fractures in the sediments. The presence of ethane and propane along with methane in the headspace gases and δ13CCH4 values (–28.4 to –79.5‰ VPDB) suggest a contribution of deep-seated thermogenic methane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Arp A J, Childress J J and Vetter R D 1987 The sulphide binding protein in the blood of the vestimentiferan tube-worm Riftia pachyptila, is the extracellular haemoglobin; J. Exp. Biol. 128 139–158.

    Article  Google Scholar 

  • Åström E K, Sen A, Carroll M L and Carroll J 2020 Cold-seeps in a warming Arctic: insights for benthic ecology; Front. Mar. Sci. 7 244.

    Article  Google Scholar 

  • Barry J P, Whaling P J and Kochevar R K 2007 Growth, production, and mortality of the chemosynthetic vesicomyid bivalve, Calyptogena kilmeri from cold-seeps off central California; Mar. Ecol. 28(1) 169–182.

    Article  Google Scholar 

  • Bastia R and Radhakrishna M 2012 Basin evolution and petroleum prospectivity of the Continental Margins of India; Elsevier, Vol. 59, 1st edn, 432p.

  • Bayon G, Henderson G M and Bohn M 2009 U–Th stratigraphy of a cold-seep carbonate crust; Chem. Geol. 260(1–2) 47–56.

    Article  Google Scholar 

  • Biswas 2012 Status of petroleum exploration in India PINSA; 78 475–494.

    Google Scholar 

  • Bowden D A, Rowden A A, Thurber A R, Baco A R, Levin L A and Smith C R 2013 Cold-seep epifaunal communities on the Hikurangi Margin, New Zealand: Composition, succession, and vulnerability to human activities; PLoS One 8(10) e76869.

    Article  Google Scholar 

  • Bright M and Lallier F 2010 The biology of vestimentiferan tubeworms; Oceanogr. Mar. Biol. 48 213–265.

    Google Scholar 

  • Cordes E E, Arthur M A, Shea K, Arvidson R S and Fisher C R 2005 Modeling the mutualistic interactions between tubeworms and microbial consortia; PLoS. Biol. 3(3) e77.

    Article  Google Scholar 

  • Cordes E E, Bergquist D C, Redding M L and Fisher C R 2007 Patterns of growth in cold-seep vestimenferans including Seepiophila jonesi: A second species of long-lived tubeworm; Mar. Ecol. 28(1) 160–168.

    Article  Google Scholar 

  • Curray J R 1984 Sri Lanka: Is it a mid-plate platelet? NARA 31 30–51.

    Google Scholar 

  • Dattagupta S, Miles L L, Barnabei M S and Fisher C R 2006 The hydrocarbon seep tubeworm Lamellibrachia luymesi primarily eliminates sulfate and hydrogen ions across its roots to conserve energy and ensure sulfide supply; J. Exper. Biol. 209(19) 3795–3805.

    Article  Google Scholar 

  • Duperron S, Gaudron S M, Rodrigues C F, Cunha M R, Decker C and Olu K 2013 An overview of chemosynthetic symbiosis in bivalves from the North Atlantic and Mediterranean Sea; Biogeoscience 10 3241–3267.

    Article  Google Scholar 

  • Duperron S, De Beer D, Zbinden M, Boetius A, Schipani V, Kahil N and Gaill F 2009 Molecular characterization of bacteria associated with the trophosome and the tube of Lamellibrachia sp., a siboglinid annelid from cold-seeps in the eastern Mediterranean; FEMS Microbiol. Ecol. 69(3) 395–409.

    Article  Google Scholar 

  • Feldman R A, Shank T M, Black M B, Baco A R, Smith C R and Vrijenhoek R C 1998 Vestimentiferan on a whale fall; Biol. Bull. 194 116–119.

    Article  Google Scholar 

  • Feng D, Cordes E E, Roberts H H and Fisher C R 2013 A comparative study of authigenic carbonates from mussel and tubeworm environments: Implications for discriminating the effects of tubeworms; Deep-Sea Res. Part I, Oceanogr. Res. Pap. 75 110–118.

    Article  Google Scholar 

  • Feng J, Li N, Luo M, Liang J, Yang S, Wang H and Chen D 2020 A Quantitative assessment of methane-derived carbon cycling at the cold-seeps in the northwestern South China Sea; Minerals 10(3) 256.

    Article  Google Scholar 

  • Fernandes S, Mazumdar A, Peketi A, Anand S S, Rengarajan R, Jose A, Manaskanya A, Carvalho M A and Shetty D 2020 Sulfidization processes in seasonally hypoxic shelf sediments: A study off the West coast of India; Mar. Petrol. Geol. 117 104353.

    Article  Google Scholar 

  • Fisher C R, Childress J J and Sanders N K 1988 The role of vestimentiferan haemoglobin in providing an environment suitable for chemoautotrophic sulfide-oxidizing endosymbionts; Symbiosis 5 229–246.

    Google Scholar 

  • Fisher C, Urcuyo I, Simpkins M and Nix E 1997 Life in the slow lane: Growth and longevity of cold-seep vestimentiferans; Mar. Ecol. 18 83–94.

    Article  Google Scholar 

  • Gaill F, Persson J, Sugiyama J, Vuong R and Chanzy H 1992 The chitin system in the tubes of deep-sea hydrothermal vent worms; J. Struct. Biol. 109 116–128.

    Article  Google Scholar 

  • Harmer T L, Rotjan R D, Nussbaumer A D, Bright M, Ng A W, DeChaine E G and Cavanaugh C M 2008 Free-living tubeworm endosymbionts found at deep-sea vents; Appl. Environ. Microbiol. 74(12) 3895–3898.

    Article  Google Scholar 

  • Julian D, Gaill F, Wood E R I C, Arp A J and Fisher C R 1999 Roots as a site of hydrogen sulfide uptake in the hydrocarbon seep vestimentiferan Lamellibrachia sp.; J. Exper. Biol. 202(17) 2245–2257.

    Article  Google Scholar 

  • Kantor Y I, Puillandre N, Fraussen K, Fedosov A E and Bouchet P 2013 Deep-water Buccinidae (Gastropoda: Neogastropoda) from sunken wood, vents and seeps: Molecular phylogeny and taxonomy; J. Mar. Biol. Assoc. UK 93(8) 2177–2195.

    Article  Google Scholar 

  • Knittel K and Boetius A 2009 Anaerobic oxidation of methane: Progress with an unknown process; Ann. Rev. Microb. 63 311–334.

    Article  Google Scholar 

  • Kobayashi G, Miura T and Kojima S 2015 Lamellibrachia sagami sp. Nov., a new vestimentiferan tubeworm (Annelida: Siboglinidae) from Sagami Bay and several sites in the northwestern Pacific Ocean; Zootaxa 4018 97–108.

    Article  Google Scholar 

  • Le Bris N, Arnaud-Haond S, Beaulieu S, Cordes E, Hilario A, Rogers A, van de Gaever S and Watanabe H 2016 Hydrothermal vents and cold-seeps; In: First Global Integrated Marine Assessment, United Nations (Cambridge University Press), pp. 853–862.

  • Levin L 2005 Ecology of cold-seep sediments: Interactions of fauna with flow, chemistry and microbes; In: Oceanography and Marine Biology: An annual review (eds) Gibson R N, Atkinson R J A and Gordon J D M, Taylor and Francis, pp. 431–446.

  • Levin L A, Baco A R, Bowden D A, Colaco A, Cordes E E, Cunha M R, Demopoulos A W J, Gobin J, Grupe B M and Le J 2016 Hydrothermal vents and methane seeps: Rethinking the sphere of influence; Front. Mar. Sci. 3 72.

    Article  Google Scholar 

  • MacAvoy S E, Carney R S, Morgan E and Macko S A 2008 Stable isotope variation among the mussel Bathymodiolus childressi and associated heterotrophic fauna at four cold-seep communities in the Gulf of Mexico; J. Shellfish Res. 27(1) 147–151.

    Article  Google Scholar 

  • Marin I 2020 Northern unicorns of the depths: Diversity of the genus Munidopsis Whiteaves, 1874 (Decapoda: Anomura: Munidopsidae) in the northwestern Pacific Ocean, with descriptions of three new species along the Russian coast; Progr. Oceanogr. 183 102263.

    Article  Google Scholar 

  • Martin J W and Haney T A 2005 Decapod crustaceans from hydrothermal vents and cold-seeps: A review through 2005; Zoological Journal of the Linnean Society 145(4) 445–522.

    Article  Google Scholar 

  • Mazumdar A, Dewangan P, Peketi A, Gullapalli S, Kalpana M S, Naik G P, Shetty D, Pujari S, Pillutla S P K, Gaikwad V V and Nazareth D 2019 The first record of active methane cold seep ecosystem associated with shallow methane hydrate from the Indian EEZ; J. Earth Syst. Sci. 128(1) 18.

    Article  Google Scholar 

  • Mccowin M F and Rouse G W 2018 A new Lamellibrachia species and confirmed range extension for Lamellibrachia barhami (Siboglinidae, Annelida) from Costa Rica methane seeps; Zootaxa 4504(1) 1–22.

    Article  Google Scholar 

  • Niemann H, Fischer D, Graffe D, Knittel K, Montiel A, Heilmeyer O, Nathen K, Pape T, Kasten S and Bohrmann G 2009 Biogeochemistry of a low-activity cold-seep in the Larsen B area, western Weddell Sea, Antarctica; Biogeosci. 6 2383–2395.

    Article  Google Scholar 

  • Nishijima M, Lindsay D J, Hata J, Nakamura A, Kasai H, Ise Y et al 2010 Association of thioautotrophic bacteria with deep-sea sponges; Mar. Biotechnol. 12 253–260.

    Article  Google Scholar 

  • Olu K, Cordes E E, Fisher C R, Brooks J M, Sibuet M and Desbruyères D 2010 Biogeography and potential exchanges among the Atlantic equatorial belt cold-seep faunas; PloS one 5(8) e11967.

    Article  Google Scholar 

  • Panieri G, Bünz S, Fornari D J, Escartin J, Serov P, Jansson P, Torres M E, Johnson J E, Hong W, Sauer S and Garcia R 2017 An integrated view of the methane system in the pockmarks at Vestnesa Ridge, 79N; Mar. Geol. 390 282–300.

    Article  Google Scholar 

  • Portail M, Olu K, Escobar-Briones E, Caprais J C, Menot L, Waeles M, Cruaud P, Sarradin P M, Godfroy A and Sarrazin J 2015 Comparative study of vent and seep macrofaunal communities in the Guaymas Basin; Biogeoscience 12 5455–5479.

    Article  Google Scholar 

  • Premarathne U, Suzuki N, Ratnayake N and Kularathne C 2016 Burial and thermal history modelling of the Mannar Basin, offshore Sri Lanka; J. Petrol. Geol. 39 193–213.

    Article  Google Scholar 

  • Rao M V, Chidambaram L, Bharktya D and Janardhanan M 2010 Integrated analysis of Late Albian to Middle Miocene sediments in Gulf of Mannar shallow waters of the Cauvery Basin, India: A sequence stratigraphic approach; In: Proceedings of 8th biennial international conference and exposition on petroleum geophysics, Hyderabad.

  • Ratnayake A S, Sampei Y K and Kularathne C W 2017 Current status of hydrocarbon exploration in Sri Lanka; Int. J. Oil Gas Coal Technol. 16(4) 377–389.

    Article  Google Scholar 

  • Sasaki T, Warén A, Kano Y, Okutani T and Fujikura K 2010 Gastropods from recent hot vents and cold-seeps: Systematics, diversity and life strategies; In: The vent and seep biota; Springer, Dordrecht, pp. 169–254.

    Chapter  Google Scholar 

  • Rao S V 2006 Discovering medium-giant fields: Perspectives and challenges; 6th International Conference and Exposition on Petroleum Geophysics, Kolkata.

  • Sibuet M and Olu-Le Roy K 2002 Cold-seep communities on continental margins: Structure and quantitative distribution relative to geological and fluid venting patterns; In: Ocean Margin Systems, Springer, pp. 235–251.

  • Sibuet M and Olu K 1998 Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins; Deep Sea Res. (Part II. Topical Stud. Oceanogr.) 45 517–567.

    Article  Google Scholar 

  • Southward E C, Andersen A C and Hourdez S 2011 Lamellibrachia anaximandri n.sp., a new vestimentiferan tubeworm (Annelida) from the Mediterranean, with notes on frenulate tubeworms from the same habitat; Zoosystema 33(3) 245–279.

    Article  Google Scholar 

  • Southward E C 1991 Three new species of Pogonophora, including two vestimentiferans, from hydrothermal sites in the Lau Back-arc Basin (Southwest Pacific Ocean); J. Nat. History 25(4) 859–881.

    Article  Google Scholar 

  • Teichert B M, Bohrmann G and Suess E 2005 Chemoherms on hydrate ridge unique microbially-mediated carbonate build-ups growing into the water column; Palaeogeogr. Palaeoclimatol. Palaeoecol. 227(1–3) 67–85.

    Article  Google Scholar 

  • Thiel V, Hügler M, Blümel M, Baumann H I, Gärtner A, Schmaljohann R, Strauss H, Garbe-Schönberg D, Petersen S, Cowart D A and Fisher C R 2012 Widespread occurrence of two carbon fixation pathways in tubeworm endosymbionts: Lessons from hydrothermal vent associated tubeworms from the Mediterranean Sea; Front. Microbiol. 3 1–23.

    Article  Google Scholar 

  • Thurber A R, Jones W J and Schnabel K 2011 Dancing for food in the deep sea: Bacterial farming by a new species of yeti crab; PLoS One 6(11) e26243.

    Article  Google Scholar 

  • Tsuchida S, Suzuki Y, Fujiwara Y, Kawato M, Uematsu K, Yamanaka T, Mizota C and Yamamoto H 2011 Epibiotic association between filamentous bacteria and the vent-associated galatheid crab, Shinkaia crosnieri (Decapoda: Anomura); J. Mar. Biol. Assoc. United Kingdom 91(1) 23–32.

    Article  Google Scholar 

  • Turekian K K and Cochran J K 1981 Growth rate of a vesicomyid clam from the Galapagos spreading center; Science 214 909–911.

    Article  Google Scholar 

  • Turekian K, Cochran K J and Bennett J, 1983 Growth rate of a vesicomyid clam from the 21 N East Pacific Rise hydrothermal area; Nature 303 55–56.

    Article  Google Scholar 

  • Vanreusel A, Andersen A C, Boetius A, Connelly D, Cunha M R, Decker C, Hilario A, Kormas K A, Maignien L and Olu K 2009 Biodiversity of cold-seep ecosystems along the European margins; Oceanography 22 110–127.

    Article  Google Scholar 

  • Volvoikar S, Mazumdar A, Peketi A, Dewangan P, Sawant B, Manaskanya A, Goswami H, Das D and Pujari S 2020 Contrasting sulfidization in the turbidite and hemipelagic sediments of Bengal Fan; Mar. Petrol. Geol., https://doi.org/10.1016/j.marpetgeo.2020.104408.

    Article  Google Scholar 

  • Vossmeyer A, Deusner C, Kato C, Inagaki F and Ferdelman T 2012 Substrate-specific pressure-dependence of microbial sulfate reduction in deep-sea cold-seep sediments of the Japan Trench; Front. Microbiol. 3 253.

    Article  Google Scholar 

  • Watanabe H, Fujikura K, Kojima S, Miyazaki J I and Fujiwara Y 2010 Japan: Vents and seeps in close proximity. In: Vent seep biota, Top. Geobiol, Dordrecht: Springer 33 379–401.

  • Whiticar M J 1999 Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane; Chem. Geol. 161(1–3) 291–314.

    Article  Google Scholar 

  • Yanqun Q I N, Zhang G, Zhifeng J I, Zhi L I, Yiping W U, Xinglong W A N G and Liang X 2017 Geological features, hydrocarbon accumulation and deep water potential of East Indian basins; Petrol. Explor. Dev. 44(5) 731–744.

    Article  Google Scholar 

  • Yoshida M, Funaki M and Vitanage P W 1992 Proterozoic to Mesozoic east Gondwana: The juxtaposition of India, Sri Lanka, and Antarctica; Tectonics 11(2) 381–391.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge Director, CSIR-NIO, and Secretary, MoES for supporting the gas hydrate program. The background information for the Cauvery–Mannar Basin was generated through the CSIR-funded GEOSCAPE program. We thank CSIR-NIO’s research vessel management team (Mr Siddharth Vernekar and Mr Harish Kumar) for their useful contributions during the SSD-070 cruise. Thanks to Drs Mandar Nanajkar and Sabyasachi Sautya for useful suggestions and insightful discussion.

Author information

Authors and Affiliations

Authors

Contributions

AM carried out result interpretation, manuscript preparation; PD interpreted geophysical results and contributed to manuscript preparation; AP, FB, MS, KS, JM, AG, AZ, SPKP, UC, CKM, WF, AT, and TP participated in onboard sampling and onshore analyses.

Corresponding author

Correspondence to A Mazumdar.

Additional information

Communicated by Pratul K Saraswati

Supplementary material pertaining to this article is available on the Journal of Earth System Science website (http://www.ias.ac.in/Journals/Journal_of_Earth_System_Science).

Supplementary Information

Below is the link to the electronic supplementary material.

12040_2021_1587_MOESM1_ESM.pptx

Supplementary Figure S1: Comparison of the outer texture of chitinous tubes of Lamellibrachia anaximandri and Lamellibrachia columna with the Lamellibrachia sp. reported in the present work. The absence of prominent collars and contorted posterior ends are the notable similarity of the tubes. Detailed analyses of the soft body morphology and DNA analyses are required for the identification of the species (ongoing). (PPTX 1217 KB)

12040_2021_1587_MOESM2_ESM.pptx

Supplementary Figure S2: Comparison of squat lobsters morphotypes belonging to the genus Munidopsis recorded in the present work with the morphotypes reported in Mazumdar et al. (2019). Note the distinct carapace features of the different forms. Species-level identification would require DNA based studies (ongoing). (PPTX 6094 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazumdar, A., Dewangan, P., Peketi, A. et al. The first record of the genus Lamellibrachia (Siboglinidae) tubeworm along with associated organisms in a chemosynthetic ecosystem from the Indian Ocean: A report from the Cauvery–Mannar Basin. J Earth Syst Sci 130, 94 (2021). https://doi.org/10.1007/s12040-021-01587-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-021-01587-1

Keywords

Navigation