Skip to main content

Advertisement

Log in

Climate Change Impacts on Himalayan Biodiversity: Evidence-Based Perception and Current Approaches to Evaluate Threats Under Climate Change

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

A Correction to this article was published on 01 April 2021

This article has been updated

Abstract

Predicting the response of biota to climate change is an active field of research. Advancements in the field of genomics has revolutionized climate change research. Genomic approaches used together with other ecological tools have the potential to identify the population and/or species at higher risk of extinction due to climate change. Himalayan biodiversity has faced drastic impacts of climate change in the past and is predicted to be vulnerable to future climate change. In this review, we provide a scientific evidence-based understanding about the impacts of climate change on Himalayan biodiversity. We summarize reported patterns of climate change in the Himalayas across time scales, their impacts on biodiversity and summarize hypotheses laid out by others to be tested in the future. We restrict our choice of study species to mammals, birds, reptiles and amphibians and discuss the application of an integrated approach using genomics and ecological tools to better understand the consequences of climate change on Himalayan biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:

Similar content being viewed by others

Change history

References

  1. Urban MC (2015) Accelerating extinction risk from climate change. Science 348(6234):571–573

    Article  CAS  Google Scholar 

  2. Thompson LG, Ellen MT, Davis ME, Lin PN, Henderson K, Mashiotta TA (2003) Tropical glacier and ice core evidence of climate change on annual to millennial time scales. Climate variability and change in high elevation regions: past, present and future. Springer, Dordrecht, pp 137–155

    Google Scholar 

  3. Pepin N, Bradley RS, Diaz HF, Baraër M, Caceres EB, Forsythe N, Fowler H, Greenwood G, Hashmi MZ, Liu XD, Miller JR (2015) Elevation-dependent warming in mountain regions of the world. Nat Clim Chang 5(5):424

    Article  Google Scholar 

  4. Shrestha UB, Gautam S, Bawa KS (2012) Widespread climate change in the Himalayas and associated changes in local ecosystems. PLoS ONE 7(5):36741

    Article  CAS  Google Scholar 

  5. Elsen PR, Tingley MW (2015) Global mountain topography and the fate of montane species under climate change. Nat Clim Chang 5(8):772–776

    Article  Google Scholar 

  6. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  7. Moritz C, Agudo R (2013) The future of species under climate change: resilience or decline? Science 341(6145):504–508

    Article  CAS  Google Scholar 

  8. Haeberli W, Bosch H, Scherler K, Ostrem G, Wallen CC (1988) World Glacier Inventory: Status 1988. IAHS (Wallingford, England) FUNEPFUNESCO (compiled by the World Glacier Monitoring Service). IAHS (ICSI)/UNEP/UNESCO/World Glacier Monitoring Service, Nairobi

  9. Owen LA (2009) Latest Pleistocene and Holocene glacier fluctuations in the Himalaya and Tibet. Quatern Sci Rev 28(21–22):2150–2164

    Article  Google Scholar 

  10. Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403(6772):853–858

    Article  CAS  Google Scholar 

  11. Xu W, Dong WJ, Fu TT, Gao W, Lu CQ, Yan F, Wu YH, Jiang K, Jin JQ, Chen HM, Zhang YP (2020) Herpetological phylogeographic analyses support a Miocene focal point of Himalayan uplift and biological diversification. Natl Sci Rev. https://doi.org/10.1093/nsr/nwaa263

    Article  Google Scholar 

  12. Che J, Zhou WW, Hu JS, Yan F, Papenfuss TJ, Wake DB, Zhang YP (2010) Spiny frogs (Paini) illuminate the history of the Himalayan region and Southeast Asia. Proc Natl Acad Sci 107(31):13765–13770

    Article  CAS  Google Scholar 

  13. Qu Y, Luo X, Zhang R, Song G, Zou F, Lei F (2011) Lineage diversification and historical demography of a montane bird Garrulax elliotii-implications for the Pleistocene evolutionary history of the eastern Himalayas. BMC Evol Biol 11(1):174

    Article  Google Scholar 

  14. Dahal N, Lissovsky AA, Lin Z, Solari K, Hadly EA, Zhan X, Ramakrishnan U (2017) Genetics, morphology and ecology reveal a cryptic pika lineage in the Sikkim Himalaya. Mol Phylogenet Evol 106:55–60

    Article  Google Scholar 

  15. Srinivasan U, Tamma K, Ramakrishnan U (2014) Past climate and species ecology drive nested species richness patterns along an east-west axis in the Himalaya. Glob Ecol Biogeogr 23(1):52–60

    Article  Google Scholar 

  16. Yannic G, Pellissier L, Ortego J, Lecomte N, Couturier S, Cuyler C, Dussault C, Hundertmark KJ, Irvine RJ, Jenkins DA, Kolpashikov L (2014) Genetic diversity in caribou linked to past and future climate change. Nat Clim Chang 4(2):132–137

    Article  Google Scholar 

  17. Royden LH, Burchfiel BC, van der Hilst RD (2008) The geological evolution of the Tibetan Plateau. Science 321(5892):1054–1058

    Article  CAS  Google Scholar 

  18. Valdiya KS (2002) Emergence and evolution of Himalaya: reconstructing history in the light of recent studies. Prog Phys Geogr 26(3):360–399

    Article  Google Scholar 

  19. Barthlott W, Mukte J, Rafiqpoor D, Kier G, Kreft H (2005) Global centres of vascular plant diversity. Nova Acta Leopoldina NF 92(342):61–83

    Google Scholar 

  20. Benn DI, Owen LA (2002) Himalayan glacial sedimentary environments: a framework for reconstructing and dating the former extent of glaciers in high mountains. Quatern Int 97:3–25

    Article  Google Scholar 

  21. Dimri AP, Bookhagen B, Stoffel M, Yasunari T (eds) (2019) Himalayan weather and climate and their impact on the environment. Springer Nature, Stuttgart

    Google Scholar 

  22. Shi Y, Zheng B, Li S (1992) Last glaciation and maximum glaciation in the Qinghai-Xizang (Tibet) Plateau: a controversy to M. Kuhle’s ice sheet hypothesis. Chin Geogr Sci 2(4):293–311

    Article  Google Scholar 

  23. Owen LA, Finkel RC, Barnard PL, Haizhou M, Asahi K, Caffee MW, Derbyshire E (2005) Climatic and topographic controls on the style and timing of Late Quaternary glaciation throughout Tibet and the Himalaya defined by 10Be cosmogenic radionuclide surface exposure dating. Quatern Sci Rev 24(12–13):1391–1411

    Article  Google Scholar 

  24. Canestrelli D, Bisconti R, Chiocchio A, Maiorano L, Zampiglia M, Nascetti G (2017) Climate change promotes hybridisation between deeply divergent species. PeerJ 5:e3072

    Article  Google Scholar 

  25. Alcaide M, Scordato ESC, Price TD, Irwin DE (2014) Genomic divergence in a ring species complex. Nature 511(7507):83–85

    Article  CAS  Google Scholar 

  26. Päckert M, Martens J, Sun YH, Severinghaus LL, Nazarenko AA, Ting J, Töpfer T, Tietze DT (2012) Horizontal and elevational phylogeographic patterns of Himalayan and Southeast Asian forest passerines (Aves: Passeriformes). J Biogeogr 39(3):556–573

    Article  Google Scholar 

  27. Hamilton JA, Miller JM (2016) Adaptive introgression as a resource for management and genetic conservation in a changing climate. Conserv Biol 30(1):33–41

    Article  Google Scholar 

  28. Lamichhaney S, Han F, Webster MT, Andersson L, Grant BR, Grant PR (2018) Rapid hybrid speciation in Darwin’s finches. Science 359(6372):224–228

    Article  CAS  Google Scholar 

  29. Hofmann S, Kraus S, Dorge T, Nothnagel M, Fritzsche P, Miehe G (2014) Effects of Pleistocene climatic fluctuations on the phylogeography, demography and population structure of a high-elevation snake species, T hermophis baileyi, on the Tibetan Plateau. J Biogeogr 41(11):2162–2172

    Article  Google Scholar 

  30. Zhang X, Zheng Y, Wei F, Bruford MW, Jia C (2011) Molecular evidence for Pleistocene refugia at the eastern edge of the Tibetan Plateau. Mol Ecol 20(14):3014–3026

    Article  Google Scholar 

  31. Khanal L, Chalise MK, He K, Acharya BK, Kawamoto Y, Jiang X (2018) Mitochondrial DNA analyses and ecological niche modeling reveal post-LGM expansion of the Assam macaque (Macaca assamensis) in the foothills of Nepal Himalaya. Am J Primatol 80(3):22748

    Article  Google Scholar 

  32. Chakraborty D, Ramakrishnan U, Sinha A (2015) Quaternary climate change and social behavior shaped the genetic differentiation of an endangered montane primate from the southern edge of the Tibetan Plateau. Am J Primatol 77(3):271–284

    Article  CAS  Google Scholar 

  33. Dobrowski SZ (2011) A climatic basis for microrefugia: the influence of terrain on climate. Glob Change Biol 17(2):1022–1035

    Article  Google Scholar 

  34. Price T, Zee J, Jamdar K, Jamdar N (2003) Bird species diversity along the Himalaya: a comparison of Himachal Pradesh with Kashmir. J Bombay Nat Hist Soc 100(2 & 3):394–409

    Google Scholar 

  35. Blackburn TM, Gaston KJ (1996) Spatial patterns in the species richness of birds in the New World. Ecography 19(4):369–376

    Article  Google Scholar 

  36. Kutzbach JE, Wright HE Jr (1985) Simulation of the climate of 18,000 years BP: Results for the North American/North Atlantic/European sector and comparison with the geologic record of North America. Quatern Sci Rev 4(3):147–187

    Article  Google Scholar 

  37. Wang X, Li Q, Xie G, Saylor JE, Tseng ZJ, Takeuchi GT, Deng T, Wang Y, Hou S, Liu J, Zhang C (2013) Mio-Pleistocene Zanda Basin biostratigraphy and geochronology, pre-Ice Age fauna, and mammalian evolution in western Himalaya. Palaeogeogr Palaeoclimatol Palaeoecol 374:81–95

    Article  Google Scholar 

  38. Bolch T, Kulkarni A, Kääb A, Huggel C, Paul F, Cogley JG, Frey H, Kargel JS, Fujita K, Scheel M, Bajracharya S (2012) The state and fate of Himalayan glaciers. Science 336(6079):310–314

    Article  CAS  Google Scholar 

  39. Gruber S, Fleiner R, Guegan E, Panday P, Schmid MO, Stumm D, Wester P, Zhang Y, Zhao L (2017) Inferring permafrost and permafrost thaw in the mountains of the Hindu Kush Himalaya region. Cryosphere 11(1):81–99

    Article  Google Scholar 

  40. Zhao W, He J, Wu Y, Xiong D, Wen F, Li A (2019) An analysis of land surface temperature trends in central Himalayan region based on MODIS products. Remote Sens 11(8):900

    Article  Google Scholar 

  41. You QL, Ren GY, Zhang YQ, Ren YY, Sun XB, Zhan YJ, Shrestha AB, Krishnan R (2017) An overview of studies of observed climate change in the Hindu Kush Himalayan (HKH) region. Adv Clim Chang Res 8(3):141–147

    Article  Google Scholar 

  42. Shrestha AB, Agrawal NK, Alfthan B, Bajracharya SR, Maréchal J, Van Oort B (2015) The Himalayan Climate and Water Atlas: impact of climate change on water resources in five of Asia’s major river basins. ICIMOD

    Google Scholar 

  43. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421(6918):37–42

    Article  CAS  Google Scholar 

  44. Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421(6918):57–60

    Article  CAS  Google Scholar 

  45. Gurung PD, Upadhyay AK, Bhardwaj PK, Sowdhamini R, Ramakrishnan U (2019) Transcriptome analysis reveals plasticity in gene regulation due to environmental cues in Primula sikkimensis, a high-altitude plant species. BMC Genomics 20(1):1–12

    Article  CAS  Google Scholar 

  46. Solari KA, Ramakrishnan U, Hadly EA (2018) Gene expression is implicated in the ability of pikas to occupy Himalayan elevational gradient. PLoS ONE 13(12):0207936

    Article  Google Scholar 

  47. Tingley MW, Monahan WB, Beissinger SR, Moritz C (2009) Birds track their Grinnellian niche through a century of climate change. Proc Natl Acad Sci 106:19637–19643

    Article  CAS  Google Scholar 

  48. HilleRisLambers J, Harsch MA, Ettinger AK, Ford KR, Theobald EJ (2013) How will biotic interactions influence climate change–induced range shifts? Ann NY Acad Sci 1297(1):112–125

    Google Scholar 

  49. Girish KS, Srinivasan U (2020) Preliminary evidence for upward elevational range shifts by Eastern Himalayan birds. bioRxiv 6(12):e29097

    Google Scholar 

  50. Srinivasan U, Wilcove DS (2021) Interactive impacts of climate change and land-use change on the demography of montane birds. Ecology 102(1):03223

    Article  Google Scholar 

  51. Telwala Y, Brook BW, Manish K, Pandit MK (2013) Climate-induced elevational range shifts and increase in plant species richness in a Himalayan biodiversity epicentre. PLoS ONE 8(2):57103

    Article  CAS  Google Scholar 

  52. Mamantov MA, Gibson-Reinemer DK, Linck EB, Sheldon KS (2021) Climate-driven range shifts of montane species vary with elevation. Glob Ecol Biogeogr 30(4):784–794

    Article  Google Scholar 

  53. Rasquinha DN, Sankaran M (2016) Modelling biome shifts in the Indian subcontinent under scenarios of future climate change. Curr Sci 111(1):147–156

    Article  Google Scholar 

  54. Chaturvedi RK, Gopalakrishnan R, Jayaraman M, Bala G, Joshi NV, Sukumar R, Ravindranath NH (2011) Impact of climate change on Indian forests: a dynamic vegetation modeling approach. Mitig Adapt Strat Glob Change 16(2):119–142

    Article  Google Scholar 

  55. Mukherjee T, Sharma LK, Kumar V, Sharief A, Dutta R, Kumar M, Joshi BD, Thakur M, Venkatraman C, Chandra K (2021) Adaptive spatial planning of protected area network for conserving the Himalayan brown bear. Sci Total Environ 754:142416

    Article  CAS  Google Scholar 

  56. Lamsal P, Kumar L, Aryal A, Atreya K (2018) Future climate and habitat distribution of Himalayan Musk Deer (Moschus chrysogaster). Eco Inform 44:101–108

    Article  Google Scholar 

  57. Singh PB, Mainali K, Jiang Z, Thapa A, Subedi N, Awan MN, Ilyas O, Luitel H, Zhou Z, Hu H (2020) Projected distribution and climate refugia of endangered Kashmir musk deer Moschus cupreus in greater Himalaya, South Asia. Sci Rep 10(1):1–13

    CAS  Google Scholar 

  58. Singh CP, Panigrahy S, Thapliyal A, Kimothi MM, Soni P, Parihar JS (2012) Monitoring the alpine treeline shift in parts of the Indian Himalayas using remote sensing. Curr Sci 102(4):559–562

    Google Scholar 

  59. Schickhoff U, Bobrowski M, Böhner J, Bürzle B, Chaudhary RP, Gerlitz L, Lange J, Müller M, Scholten T, Schwab N (2016) Climate change and treeline dynamics in the Himalaya. In: Singh R, Schickhoff U, Mal S (eds) Climate change, glacier response, and vegetation dynamics in the Himalaya. Springer, Cham. https://doi.org/10.1007/978-3-319-28977-9_15

    Chapter  Google Scholar 

  60. Buhne HST, Tobias JA, Durant SM, Pettorelli N (2021) Improving predictions of climate change-land use change interactions. Trends Ecol Evol 36:29–38

    Article  Google Scholar 

  61. Oliver TH, Morecroft MD (2014) Interactions between climate change and land use change on biodiversity: attribution problems, risks, and opportunities. Wiley Interdiscip Rev 5(3):317–335

    Google Scholar 

  62. Stefanescu C, Carnicer J, Penuelas J (2011) Determinants of species richness in generalist and specialist Mediterranean butterflies: the negative synergistic forces of climate and habitat change. Ecography 34(3):353–363

    Article  Google Scholar 

  63. Bhattacharyya S, Mungi NA, Kawamichi T, Rawat GS, Adhikari BS, Wilkening JL (2019) Insights from present distribution of an alpine mammal Royle’s pika (Ochotona roylei) to predict future climate change impacts in the Himalaya. Reg Environ Change 19(8):2423–2435

    Article  Google Scholar 

  64. Aryal A, Shrestha UB, Ji W, Ale SB, Shrestha S, Ingty T, Maraseni T, Cockfield G, Raubenheimer D (2016) Predicting the distributions of predator (snow leopard) and prey (blue sheep) under climate change in the Himalaya. Ecol Evol 6(12):4065–4075

    Article  Google Scholar 

  65. Li J, McCarthy TM, Wang H, Weckworth BV, Schaller GB, Mishra C, Lu Z, Beissinger SR (2016) Climate refugia of snow leopards in High Asia. Biol Cons 203:188–196

    Article  Google Scholar 

  66. Subba B, Sen S, Ravikanth G, Nobis MP (2018) Direct modelling of limited migration improves projected distributions of Himalayan amphibians under climate change. Biol Cons 227:352–360

    Article  Google Scholar 

  67. Walther GR (2010) Community and ecosystem responses to recent climate change. Philos Trans R Soc B 365(1549):2019–2024

    Article  Google Scholar 

  68. Blois JL, Zarnetske PL, Fitzpatrick MC, Finnegan S (2013) Climate change and the past, present, and future of biotic interactions. Science 341(6145):499–504

    Article  CAS  Google Scholar 

  69. Gilman SE, Urban MC, Tewksbury J, Gilchrist GW, Holt RD (2010) A framework for community interactions under climate change. Trends Ecol Evol 25(6):325–331

    Article  Google Scholar 

  70. Staniczenko PP, Lewis OT, Tylianakis JM, Albrecht M, Coudrain V, Klein AM, Reed-Tsochas F (2017) Predicting the effect of habitat modification on networks of interacting species. Nat Commun 8(1):1–10

    Article  CAS  Google Scholar 

  71. Fargione J, Brown CS, Tilman D (2003) Community assembly and invasion: an experimental test of neutral versus niche processes. Proc Natl Acad Sci 100(15):8916–8920

    Article  CAS  Google Scholar 

  72. Shrestha UB, Shrestha BB (2019) Climate change amplifies plant invasion hotspots in Nepal. Divers Distrib 25(10):1599–1612

    Article  Google Scholar 

  73. Peers MJ, Majchrzak YN, Menzies AK, Studd EK, Bastille-Rousseau G, Boonstra R, Humphries M, Jung TS, Kenney AJ, Krebs CJ, Murray DL (2020) Climate change increases predation risk for a keystone species of the boreal forest. Nat Clim Chang 10(12):1149–1153

    Article  Google Scholar 

  74. Alexander JM, Diez JM, Levine JM (2015) Novel competitors shape species’ responses to climate change. Nature 525(7570):515–518

    Article  CAS  Google Scholar 

  75. Nordberg EJ, Schwarzkopf L (2019) Reduced competition may allow generalist species to benefit from habitat homogenization. J Appl Ecol 56(2):305–318

    Article  Google Scholar 

  76. Martin TE, Maron JL (2012) Climate impacts on bird and plant communities from altered animal–plant interactions. Nat Clim Chang 2(3):195–200

    Article  Google Scholar 

  77. Kohli M, Mijiddorj TN, Suryawanshi KR, Mishra C, Boldgiv B, Sankaran M (2020) Grazing and climate change have site-dependent interactive effects on vegetation in Asian montane rangelands. J Appl Ecol 58(3):539–549

    Article  Google Scholar 

  78. Chapin FS III, Shaver GR, Giblin AE, Nadelhoffer KJ, Laundre JA (1995) Responses of arctic tundra to experimental and observed changes in climate. Ecology 76(3):694–711

    Article  Google Scholar 

  79. Start D (2020) Phenotypic plasticity and community composition interactively shape trophic interactions. Oikos 129(8):1163–1173

    Article  Google Scholar 

  80. Bonachela JA, Burrows MT, Pinsky ML (2021) Shape of species climate response curves affects community response to climate change. Ecol Lett 24(4): 708–718

    Article  Google Scholar 

  81. Kissling WD, Dormann CF, Groeneveld J, Hickler T, Kühn I, McInerny GJ, Montoya JM, Römermann C, Schiffers K, Schurr FM, Singer A (2012) Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents. J Biogeogr 39(12):2163–2178

    Article  Google Scholar 

  82. Sharma N, Behera MD, Das AP, Panda RM (2019) Plant richness pattern in an elevation gradient in the Eastern Himalaya. Biodivers Conserv 28(8–9):2085–2104

    Article  Google Scholar 

  83. Acharya BK, Chettri B, Vijayan L (2011) Distribution pattern of trees along an elevation gradient of Eastern Himalaya, India. Acta Oecologica 37(4):329–336

    Article  Google Scholar 

  84. Khatiwada JR, Zhao T, Chen Y, Wang B, Xie F, Cannatella DC, Jiang J (2019) Amphibian community structure along elevation gradients in eastern Nepal Himalaya. BMC Ecol 19(1):19

    Article  Google Scholar 

  85. Srinivasan U, Elsen PR, Wilcove DS (2019) Annual temperature variation influences the vulnerability of montane bird communities to land-use change. Ecography 42(12):2084–2094

    Article  Google Scholar 

  86. Dahal N, Kumar S, Noon BR, Nayak R, Lama RP, Ramakrishnan U (2020) The role of geography, environment, and genetic divergence on the distribution of pikas in the Himalaya. Ecol Evol 10(3):1539–1551

    Article  Google Scholar 

  87. Price TD, Hooper DM, Buchanan CD, Johansson US, Tietze DT, Alström P, Olsson U, Ghosh-Harihar M, Ishtiaq F, Gupta SK, Martens J (2014) Niche filling slows the diversification of Himalayan songbirds. Nature 509(7499):222–225

    Article  CAS  Google Scholar 

  88. Thackeray SJ, Henrys PA, Hemming D, Bell JR, Botham MS, Burthe S, Helaouet P, Johns DG, Jones ID, Leech DI, Mackay EB (2016) Phenological sensitivity to climate across taxa and trophic levels. Nature 535(7611):241–245

    Article  CAS  Google Scholar 

  89. Chmura HE, Kharouba HM, Ashander J, Ehlman SM, Rivest EB, Yang LH (2019) The mechanisms of phenology: the patterns and processes of phenological shifts. Ecol Monogr 89(1):01337

    Article  Google Scholar 

  90. Socolar JB, Epanchin PN, Beissinger SR, Tingley MW (2017) Phenological shifts conserve thermal niches in North American birds and reshape expectations for climate-driven range shifts. Proc Natl Acad Sci 114(49):12976–12981

    Article  CAS  Google Scholar 

  91. Shipley JR, Twining CW, Taff CC, Vitousek MN, Flack A, Winkler DW (2020) Birds advancing lay dates with warming springs face greater risk of chick mortality. Proc Natl Acad Sci 117(41):25590–25594

    Article  CAS  Google Scholar 

  92. Visser ME, Gienapp P (2019) Evolutionary and demographic consequences of phenological mismatches. Nat Ecol Evol 3(6):879–885

    Article  Google Scholar 

  93. Gilroy JJ, Gill JA, Butchart SH, Jones VR, Franco AM (2016) Migratory diversity predicts population declines in birds. Ecol Lett 19(3):308–317

    Article  Google Scholar 

  94. Eisenhauer N, Herrmann S, Hines J, Buscot F, Siebert J, Thakur MP (2018) The dark side of animal phenology. Trends Ecol Evol 33(12):898–901

    Article  Google Scholar 

  95. Ranjitkar S, Luedeling E, Shrestha KK, Guan K, Xu J (2013) Flowering phenology of tree rhododendron along an elevation gradient in two sites in the Eastern Himalayas. Int J Biometeorol 57(2):225–240

    Article  Google Scholar 

  96. Hart R, Salick J (2018) Vulnerability of phenological progressions over season and elevation to climate change: rhododendrons of Mt. Yulong. Perspect Plant Ecol Evol Syst 34:129–139

    Article  Google Scholar 

  97. Basnett S, Ganesan R, Devy SM (2019) Floral traits determine pollinator visitation in Rhododendron species across an elevation gradient in the Sikkim Himalaya. Alp Bot 129(2):81–94

    Article  Google Scholar 

  98. Gurung PD, Ratnam J, Ramakrishnan U (2018) Facilitative interactions among co-flowering Primula species mediated by pollinator sharing. Plant Ecol 219(10):1159–1168

    Article  Google Scholar 

  99. Bradshaw WE, Holzapfel CM (2008) Genetic response to rapid climate change: it’s seasonal timing that matters. Mol Ecol 17(1):157–166

    Article  CAS  Google Scholar 

  100. Acharya BK, Chettri B (2012) Effect of climate change on birds, herpetofauna and butterflies in Sikkim Himalaya: a preliminary investigation. In: Climate change in Sikkim: patterns, impacts and initiatives, pp 141–160

  101. Tafani M, Cohas A, Bonenfant C, Gaillard JM, Allainé D (2013) Decreasing litter size of marmots over time: a life history response to climate change? Ecology 94(3):580–586

    Article  Google Scholar 

  102. Ozgul A, Childs DZ, Oli MK, Armitage KB, Blumstein DT, Olson LE, Tuljapurkar S, Coulson T (2010) Coupled dynamics of body mass and population growth in response to environmental change. Nature 466(7305):482–485

    Article  CAS  Google Scholar 

  103. Merlin C, Liedvogel M (2019) The genetics and epigenetics of animal migration and orientation: birds, butterflies and beyond. J Exp Biol 222(Suppl 1):jeb191890

    Article  Google Scholar 

  104. Barve S, Dhondt AA, Mathur VB, Cheviron ZA (2016) Life-history characteristics influence physiological strategies to cope with hypoxia in Himalayan birds. Proc R Soc B 283(1843):20162201

    Article  Google Scholar 

  105. Prates I, Xue AT, Brown JL, Alvarado-Serrano DF, Rodrigues MT, Hickerson MJ, Carnaval AC (2016) Inferring responses to climate dynamics from historical demography in neotropical forest lizards. Proc Natl Acad Sci 113(29):7978–7985

    Article  CAS  Google Scholar 

  106. Urban MC, Bocedi G, Hendry AP, Mihoub JB, Pe’er G, Singer A, Bridle JR, Crozier LG, De Meester L, Godsoe W, Gonzalez A (2016) Improving the forecast for biodiversity under climate change. Science 353(6304):aad8466

    Article  CAS  Google Scholar 

  107. Bay RA, Karp DS, Saracco JF, Anderegg WR, Frishkoff L, Wiedenfeld D, Smith TB, Ruegg K (2020) Genetic variation reveals individual-level climate tracking across the full annual cycle of a migratory bird. Ecol Lett 24(4):819–828

    Article  Google Scholar 

  108. Jeremias G, Barbosa J, Marques SM, Asselman J, Gonçalves FJ, Pereira JL (2018) Synthesizing the role of epigenetics in the response and adaptation of species to climate change in freshwater ecosystems. Mol Ecol 27(13):2790–2806

    Article  Google Scholar 

  109. Razgour O, Forester B, Taggart JB, Bekaert M, Juste J, Ibáñez C, Puechmaille SJ, Novella-Fernandez R, Alberdi A, Manel S (2019) Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections. Proc Natl Acad Sci 116(21):10418–10423

    Article  CAS  Google Scholar 

  110. Theodoridis S, Rahbek C, Nogues-Bravo D (2021) Exposure of mammal genetic diversity to mid-21st century global change. Ecography. https://doi.org/10.1111/ecog.05588

    Article  Google Scholar 

  111. Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central–marginal hypothesis and beyond. Mol Ecol 17(5):1170–1188

    Article  CAS  Google Scholar 

  112. Rubidge EM, Patton JL, Lim M, Burton AC, Brashares JS, Moritz C (2012) Climate-induced range contraction drives genetic erosion in an alpine mammal. Nat Clim Chang 2(4):285–288

    Article  Google Scholar 

  113. Layton KKS, Snelgrove PVR, Dempson JB, Kess T, Lehnert SJ, Bentzen P, Duffy SJ, Messmer AM, Stanley RRE, DiBacco C, Salisbury SJ (2021) Genomic evidence of past and future climate-linked loss in a migratory Arctic fish. Nat Clim Change. https://doi.org/10.1038/s41558-021-01023-8

    Article  Google Scholar 

  114. Bay RA, Harrigan RJ, Le Underwood V, Gibbs HL, Smith TB, Ruegg K (2018) Genomic signals of selection predict climate-driven population declines in a migratory bird. Science 359(6371):83–86

    Article  CAS  Google Scholar 

  115. Cheviron ZA, Connaty AD, McClelland GB, Storz JF (2014) Functional genomics of adaptation to hypoxic cold-stress in high-altitude deer mice: transcriptomic plasticity and thermogenic performance. Evolution 68(1):48–62

    Article  Google Scholar 

  116. Levis NA, Pfennig DW (2020) Plasticity-led evolution: a survey of developmental mechanisms and empirical tests. Evol Dev 22(1–2):71–87

    Article  Google Scholar 

  117. Radersma R, Noble DW, Uller T (2020) Plasticity leaves a phenotypic signature during local adaptation. Evol Lett 4(4):360–370

    Article  Google Scholar 

  118. Cheviron ZA, Bachman GC, Connaty AD, McClelland GB, Storz JF (2012) Regulatory changes contribute to the adaptive enhancement of thermogenic capacity in high-altitude deer mice. Proc Natl Acad Sci 109(22):8635–8640

    Article  CAS  Google Scholar 

  119. Grant PR, Grant BR (2019) Hybridization increases population variation during adaptive radiation. Proc Natl Acad Sci 116(46):23216–23224

    Article  CAS  Google Scholar 

  120. Ishtiaq F, Bowden CG, Jhala YV (2017) Seasonal dynamics in mosquito abundance and temperature do not influence avian malaria prevalence in the Himalayan foothills. Ecol Evol 7(19):8040–8057

    Article  Google Scholar 

  121. Kock RA, Orynbayev M, Robinson S, Zuther S, Singh NJ, Beauvais W, Morgan ER, Kerimbayev A, Khomenko S, Martineau HM, Rystaeva R (2018) Saigas on the brink: multidisciplinary analysis of the factors influencing mass mortality events. Sci Adv 4(1):p.eaao2314

    Article  CAS  Google Scholar 

  122. Sanderson CE, Jobbins SE, Alexander KA (2014) With Allee effects, life for the social carnivore is complicated. Popul Ecol 56(2):417–425

    Article  Google Scholar 

  123. Acevedo-Whitehouse K, Gulland F, Greig D, Amos W (2003) Disease susceptibility in California sea lions. Nature 422(6927):35–35

    Article  CAS  Google Scholar 

  124. Luo C, Rodriguez-R LM, Johnston ER, Wu L, Cheng L, Xue K, Tu Q, Deng Y, He Z, Shi JZ, Yuan MM (2014) Soil microbial community responses to a decade of warming as revealed by comparative metagenomics. Appl Environ Microbiol 80(5):1777–1786

    Article  CAS  Google Scholar 

  125. Yu F, Yu F, McGuire PM, Kilpatrick CW, Pang J, Wang Y, Lu S, Woods CA (2004) Molecular phylogeny and biogeography of woolly flying squirrel (Rodentia: Sciuridae), inferred from mitochondrial cytochrome b gene sequences. Mol Phylogenet Evol 33(3):735–744

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the editor and reviewers for their constructive comments which have greatly improved the manuscript. This manuscript represents CSIR-IHBT communication no. 4799.

Funding

ND acknowledges DST, Govt. of India for DST INSPIRE Faculty Award grant number DST/INSPIRE/04/2018/001587.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nishma Dahal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dahal, N., Lamichhaney, S. & Kumar, S. Climate Change Impacts on Himalayan Biodiversity: Evidence-Based Perception and Current Approaches to Evaluate Threats Under Climate Change. J Indian Inst Sci 101, 195–210 (2021). https://doi.org/10.1007/s41745-021-00237-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-021-00237-1

Navigation