Skip to main content

Advertisement

Log in

Tensile deformation behavior of nickel-free high-manganese austenitic cryogenic-temperature steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Nickel-free high-manganese austenitic Fe–24.4Mn–4.04Al–0.057C steel was produced by smelting, and the homogenized forged billet was hot-rolled. The plastic deformation mechanism was investigated through tensile testing of the hot-rolled sample. Different characterization techniques such as scanning electron microscopy, transmission electron microscopy, electron backscattered diffraction, and X-ray diffraction were used to analyze the microstructural evolution of steel under different strain levels. The steel had a single austenite phase, which was stable during deformation. After hot rolling, annealing twins were observed in the microstructure of the steel. The steel showed an excellent combination of mechanical properties, like a tensile strength of 527 MPa, impact energy of 203 J at − 196 °C, and an elongation of 67% till fracture. At the initial deformation stage, the dislocations were generated within the austenite grains, entangled and accumulated at the grain boundaries and annealing twin boundaries. Annealing twins participated in plastic deformation and hindered the dislocation movement. As the deformation progressed, the dislocation slip was hindered and produced stress concentration, and the stacking faults evolved into mechanical twins, which released the stress concentration and delayed the necking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S.S.M. Tavares, C.R. Rodrigues, C.A.S. de Oliveira, C.B. Woyames, J. Dille, J. Mater. Eng. Perform. 27 (2018) 1530–1536.

    Article  Google Scholar 

  2. X.Q. Zhao, T. Pan, Q.F. Wang, H. Su, C.F. Yang, Q.X. Yang, J. Iron Steel Res. Int. 18 (2011) No. 5, 47–51.

    Article  Google Scholar 

  3. Y.H. Yang, Q.W. Cai, H.B. Wu, H. Wang, Acta Metall. Sin. 45 (2009) 270–274.

    Google Scholar 

  4. C.K. Syn, J.W. Morris, S. Jin, Metall. Trans. A 7 (1976) 1827–1832.

    Article  Google Scholar 

  5. M. Hoshino, N. Saitoh, H. Muraoka, O. Saeki, Nippon Steel Tech. Rep. 90 (2004) 20–24.

    Google Scholar 

  6. T. Kamo, K. Arimochi, T. Kawabata, K. Onishi, R. Andou, M. Yamashita, H. Iwahashi, N. Kubo, Y. Fuchimoto, M. Takata, N. Sakato, M. Mitsumoto, S. Hirai, H. Hirose, Y. Hagihara, ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering, Development of 7%Ni-TMCP Steel Plate for LNG Storage Tanks, Rotterdam, Netherlands, 2011, pp. 113–122.

  7. S.Y. Han, S.Y. Shin, S. Lee, N.J. Kim, J.H. Kwak, K.G. Chin, Metall. Mater. Trans. A 42 (2011) 138–146.

    Article  Google Scholar 

  8. H. Mohrbacher, M. Spöttl, J. Paegle, Adv. Manuf. 3 (2015) 3–18.

    Article  Google Scholar 

  9. J. Lee, H. Kim, S.J. Park, J. Moon, H.N. Han, Mater. Sci. Eng. A 768 (2019) 138460.

    Article  Google Scholar 

  10. P. Ren, X.P. Chen, Z.X. Cao, L. Mei, W.J. Li, W.Q. Cao, Q. Liu, Mater. Sci. Eng. A 752 (2019) 160–166.

    Article  Google Scholar 

  11. D.W. Suh, S.J. Park, T.H. Lee, C.S. Oh, S.J. Kim, Metall. Mater. Trans. A 41 (2010) 397–408.

    Article  Google Scholar 

  12. W.K. Choo, J.H. Kim, J.C. Yoon, Acta Mater. 45 (1997) 4877–4885.

    Article  Google Scholar 

  13. G. Frommeyer, U. Brüx, Steel Res. Int. 77 (2006) 627–633.

    Article  Google Scholar 

  14. J. Charles, A. Berghezan, A. Lutts, J. Phys. Colloques 45 (1984) C1-619–C1-623.

  15. S.S. Sohn, B.J. Lee, S. Lee, N.J. Kim, J.H. Kwak, Acta Mater. 61 (2013) 5050–5066.

    Article  Google Scholar 

  16. J.K. Kim, B.C. De Cooman, Mater. Sci. Eng. A 676 (2016) 216–231.

    Article  Google Scholar 

  17. L.F. Zhang, R.B. Song, C. Zhao, F.Q. Yang, Y. Xu, S.G. Peng, Mater. Sci. Eng. A 643 (2015) 183–193.

    Article  Google Scholar 

  18. S. Vercammen, B. Blanpain, B.C. De Cooman, P. Wollants, Acta Mater. 52 (2004) 2005–2012.

    Article  Google Scholar 

  19. H. Kim, Y. Ha, K.H. Kwon, M. Kang, N.J. Kim, S. Lee, Acta Mater. 87 (2015) 332–343.

    Article  Google Scholar 

  20. O. Bouaziz, S. Allain, C.P. Scott, P. Cugy, D. Barbier, Curr. Opin. Solid State Mater. Sci. 15 (2011) 141–168.

    Article  Google Scholar 

  21. D.D. Li, L.H. Qian, C.Z. Wei, S. Liu, F.C. Zhang, J.Y. Meng, Mater. Sci. Eng. A 789 (2020) 139586.

    Article  Google Scholar 

  22. H. Kim, J. Park, J.E. Jung, S.S. Sohn, S. Lee, Mater. Sci. Eng. A 641 (2015) 340–347.

    Article  Google Scholar 

  23. D. Barbier, N. Gey, S. Allain, N. Bozzolo, M. Humbert, Mater. Sci. Eng. A 500 (2009) 196–206.

    Article  Google Scholar 

  24. J. Chen, J.K. Ren, Z.Y. Liu, G.D. Wang, Mater. Sci. Eng. A 737 (2018) 158–165.

    Article  Google Scholar 

  25. M.K. Dash, R. Mythili, A. Dasgupta, S. Saroja, Metall. Mater. Trans. A 49 (2018) 2843–2853.

    Article  Google Scholar 

  26. L. Bracke, K. Verbeken, L. Kestens, J. Penning, Acta Mater. 57 (2009) 1512–1524.

    Article  Google Scholar 

  27. S. Mahajan, C.S. Pande, M.A. Imam, B.B. Rath, Acta Mater. 45 (1997) 2633–2638.

    Article  Google Scholar 

  28. S.R. Kalidindi, A.A. Salem, R.D. Doherty, Adv. Eng. Mater. 5 (2003) 229–232.

    Article  Google Scholar 

  29. G. Dini, A. Najafizadeh, R. Ueji, S.M. Monir-Vaghefi, Mater. Des. 31 (2010) 3395–3402.

    Article  Google Scholar 

  30. M.N. Shiekhelsouk, V. Favier, K. Inal, M. Cherkaoui. Int. J. Plast. 25 (2009) 105–133.

    Article  Google Scholar 

  31. A. Rohatgi, K.S. Vecchio, G.T. GrayIII, Mater. Sci. Eng. A 32 (2001) 135–145.

    Google Scholar 

  32. O. Bouaziz, N. Guelton. Mater. Sci. Eng. A 319–321 (2001) 246–249.

    Article  Google Scholar 

  33. S. Asgari, E. EI-Danaf, S.R. Kalidindi, R.D. Doherty, Metall. Mater. Trans. A 28 (1997) 1781–1795.

  34. S.R. Kalidindi, Int. J. Plast. 14 (1998) 1265–1277.

    Article  Google Scholar 

  35. O. Grassel, L. Krüger, G. Frommeyer, L.W. Meyer, Int. J. Plast. 16 (2000) 1391–1409.

    Article  Google Scholar 

  36. L. Bracke, G. Mertens, J. Penning, B.C. De Cooman, M. Liebeherr, N. Akdut, Metall. Mater. Trans. A 37 (2006) 307–317.

    Article  Google Scholar 

  37. X.Z. Liao, F. Zhou, E.J. Lavernia, S.G. Srinivasan, M.I. Baskes, D.W. He, Y.T. Zhu, Appl. Phys. Lett. 83 (2003) 632–634.

    Article  Google Scholar 

  38. J. Park, M. Kang, S.S. Sohn, S.H. Kim, H.S. Kim, N.J. Kim, S. Lee, Mater. Sci. Eng. A 684 (2017) 54–63.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2017YFB0304900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-bin Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Xt., Wu, Hb., Gu, Y. et al. Tensile deformation behavior of nickel-free high-manganese austenitic cryogenic-temperature steel. J. Iron Steel Res. Int. 29, 793–801 (2022). https://doi.org/10.1007/s42243-021-00612-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00612-3

Keywords

Navigation