Skip to main content
Log in

On the Mechanism of Melting in Simple Metals

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

Molecular dynamics simulations of aluminum demonstrate a significant increase in the vibrational entropy of formation of interstitial defects having the dumbbell configuration near the melting point Tm. Using this result and estimating the density of such defects in the melt by three independent methods, the configurational component of the entropy of the system with defects is determined. It is found that about 70% of the total entropy of melting (and, hence, of the heat of fusion) observed in experiments can be attributed to the generation of interstitial dumbbells at T = Tm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. We emphasize that this point of view is supported by quite convincing experimental evidence for frozen melts (metallic glasses) [36, 37].

REFERENCES

  1. F. A. Lindemann, Phys. Z. 11, 609 (1910).

    Google Scholar 

  2. Q. S. Mei and K. Lu, Prog. Mater. Sci. 52, 1175 (2007).

    Article  Google Scholar 

  3. M. de Podesta, Understanding the Properties of Matter (Taylor and Francis, London, 2001).

    Google Scholar 

  4. A. V. Granato, J. Non-Cryst. Solids 352, 4821 (2006).

    Article  ADS  Google Scholar 

  5. D. O. Nason and W. A. Tiller, Acta Metall. 21, 747 (1973).

    Article  Google Scholar 

  6. N. F. Mott, Proc. R. Soc. London, Ser. A 146, 465 (1934).

    Article  ADS  Google Scholar 

  7. M. Lasocka, Phys. Lett. A 51, 137 (1975).

    Article  ADS  Google Scholar 

  8. J. Frenkel, Z. Phys. 35, 652 (1926).

    Article  ADS  Google Scholar 

  9. J. C. Slater, Introduction to Chemical Physics (McGraw-Hill, New York, 1963).

    Google Scholar 

  10. A. Kanigel, J. Adler, and E. Polturak, Int. J. Mod. Phys. C 12, 727 (2001).

    Article  ADS  Google Scholar 

  11. F. H. Stillinger and T. A. Weber, J. Chem. Phys. 81, 5095 (1984).

    Article  ADS  Google Scholar 

  12. G. C. S. Lee and J. C. M. Li, Phys. Rev. B 39, 9302 (1989).

    Article  ADS  Google Scholar 

  13. V. Sorkin, E. Polturak, and J. Adler, Phys. Rev. B 68, 174102 (2003).

    Article  ADS  Google Scholar 

  14. Y. Zhou and X. Jin, Phys. Rev. B 71, 224113 (2005).

    Article  ADS  Google Scholar 

  15. H. Zhang, M. Khalkhali, Q. Liu, and J. F. Douglas, J. Chem. Phys. 138, 12A538 (2013).

  16. A. Samanta, M. E. Tuckerman, T.-Q. Yu, and E. Weinan, Science (Washington, DC, U. S.) 346, 729 (2014).

    Article  ADS  Google Scholar 

  17. A. V. Granato, Phys. Rev. Lett. 68, 974 (1992).

    Article  ADS  Google Scholar 

  18. A. V. Granato, Eur. Phys. J. B 87, 18 (2014).

    Article  ADS  Google Scholar 

  19. E. V. Safonova, Yu. P. Mitrofanov, R. A. Konchakov, A. Yu. Vinogradov, N. P. Kobelev, and V. A. Khonik, J. Phys.: Condens. Matter 28, 215401 (2016).

    ADS  Google Scholar 

  20. A. V. Granato, D. M. Joncich, and V. A. Khonik, Appl. Phys. Lett. 97, 171911 (2010).

    Article  ADS  Google Scholar 

  21. E. V. Safonova, R. A. Konchakov, Yu. P. Mitrofanov, N. P. Kobelev, A. Yu. Vinogradov, and V. A. Khonik, JETP Lett. 103, 765 (2016).

    Article  ADS  Google Scholar 

  22. V. Khonik and N. Kobelev, Metals 9, 605 (2019).

    Article  Google Scholar 

  23. J. Plimpton, J. Comput. Phys. 117, 1 (1995).

    Article  ADS  Google Scholar 

  24. H. W. Sheng, M. Kramer, A. Cadien, T. Fujita, and M. Chen, Phys. Rev. B 83, 134118 (2011).

    Article  ADS  Google Scholar 

  25. I. Kruglov, O. Sergeev, A. Yanilkin, and A. R. Oganov, Sci. Rep. 7, 8512 (2017).

    Article  ADS  Google Scholar 

  26. M. W. Chase, NIST-JANAF Thermochemical Tables, Part I: Al–Co (Am. Chem. Soc., Am. Inst. Phys. NIST, New York, 1998). https://janaf.nist.gov/tables/Al-001.html.

  27. N. P. Kobelev and V. A. Khonik, J. Exp. Theor. Phys. 126, 340 (2018).

    Article  ADS  Google Scholar 

  28. P. H. Dederichs, C. Lehman, H. R. Schober, A. Scholz, and R. Zeller, J. Nucl. Mater. 69–70, 176 (1978).

    Article  ADS  Google Scholar 

  29. S. R. de Debiaggi, M. de Koning, and A. M. Monti, Phys. Rev. B 73, 104103 (2006).

    Article  ADS  Google Scholar 

  30. Y. Mishin, Philos. Mag. A 81, 2591 (2001).

    Article  ADS  Google Scholar 

  31. K. Nordlund and R. S. Averback, Phys. Rev. Lett. 80, 4201 (1998).

    Article  ADS  Google Scholar 

  32. H. Numakura, in Physical Metallurgy, 5th ed., Ed. by D. E. Laughlin and K. Hono (Elsevier, Amsterdam, 2014), p. 561.

    Google Scholar 

  33. G. Neumann, V. Tölle, and C. Tuijn, Phys. B (Amsterdam, Neth.) 271, 21 (1999).

  34. K. Nordlund, Y. Ashkenazy, R. S. Averback, and A. V. Granato, Europhys. Lett. 71, 625 (2005).

    Article  ADS  Google Scholar 

  35. N. P. Kobelev and V. A. Khonik, J. Non-Cryst. Sol. 427, 184 (2015).

    Google Scholar 

  36. G. V. Afonin, Yu. P. Mitrofanov, A. S. Makarov, N. P. Kobelev, W. H. Wang, and V. A. Khonik, Acta Mater. 115, 204 (2016).

    Article  ADS  Google Scholar 

  37. G. V. Afonin, Yu. P. Mitrofanov, N. P. Kobelev, M. W. da Silva Pinto, G. Wilde, and V. A. Khonik, Scr. Mater. 166, 6 (2019).

    Article  Google Scholar 

  38. M. Forsblom and G. Grimvall, Nat. Mater 4, 388 (2005).

    Article  ADS  Google Scholar 

  39. R. A. Konchakov, A. S. Makarov, G. V. Afonin, M. A. Kretova, N. P. Kobelev, and V. A. Khonik, JETP Lett. 109, 460 (2019).

    Article  ADS  Google Scholar 

  40. R. A. Konchakov, A. S. Makarov, N. P. Kobelev, A. M. Glezer, G. Wilde, and V. A. Khonik, J. Phys.: Condens. Matter 31, 385703 (2019).

    ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no 20-62-46003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Konchakov.

Additional information

Translated by K. Kugel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konchakov, R.A., Makarov, A.S., Aronin, A.S. et al. On the Mechanism of Melting in Simple Metals. Jetp Lett. 113, 345–351 (2021). https://doi.org/10.1134/S0021364021050064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364021050064

Navigation