Skip to main content
Log in

Femtosecond Laser Irradiation of a Multilayer Metal–Metal Nanostructure

  • OPTICS AND LASER PHYSICS
  • Published:
JETP Letters Aims and scope Submit manuscript

The selective modification of upper layers of a Ni/Al multilayer nanostructure irradiated by a single femtosecond laser pulse has been studied. The analysis of surface topography indicates that either partial or complete removal of two upper layers is possible depending on the absorbed energy. The surface has been scanned by an atomic force microscope. The numerical simulation of the phenomenon with a two-temperature hydrodynamic code has revealed an asynchronous dynamics of the electron subsystems of Ni and Al and an inhomogeneous heating of ion subsystems. As a result, a complex combination of compression and rarefaction waves is initiated in the multilayer target. It has been shown numerically that, as the absorbed energy increases, the first nickel layer is initially ruptured because of the localization of tensile stresses. The experimental and numerical thicknesses of the separated layer and the threshold energy are in agreement with each other. Consequently, the parameters of two-temperature models of nickel and aluminum are selected correctly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. J. A. Syed, S. Tang, and X. Meng, Sci. Rep. 7, 4403 (2017).

    Article  ADS  Google Scholar 

  2. S. J. Bull and A. M. Jones, Surf. Coat. Technol. 78, 173 (1996).

    Article  Google Scholar 

  3. M. M. Barysheva, A. E. Pestov, N. N. Salashchenko, M. N. Toropov, and N. I. Chkhalo, Phys. Usp. 55, 681 (2012).

    Article  Google Scholar 

  4. V. V. Temnov, Nat. Photon. 6, 728 (2012).

    Article  ADS  Google Scholar 

  5. V. V. Temnov, C. Klieber, K. A. Nelson, T. Thomay, V. Knittel, A. Leitenstorfer, D. Makarov, M. Albrecht, and R. Bratschitsch, Nat. Commun. 4, 1468 (2013).

    Article  ADS  Google Scholar 

  6. C.-Yu Chen and T.-Li Chang, Microelectron. Eng. C 143, 41 (2015).

    Article  Google Scholar 

  7. B. Gakovic, C. Radu, M. Zamfirescu, B. Radak, M. Trtica, S. Petrovic, P. Panjan, F. Zupanic, C. Ristoscu, and I. N. Mihailescu, Surf. Coat. Technol. 206, 411 (2011).

    Article  Google Scholar 

  8. M. Ulmeanu, M. Filipescu, N. D. Scarisoreanu, G. Georgescu, L. Rusen, and M. Zamfirescu, Appl. Phys. A 104, 247 (2011).

    Article  ADS  Google Scholar 

  9. N. L. LaHaye, J. Kurian, P. K. Diwakar, L. Alff, and S. S. Harilal, Sci. Rep. 5, 13121 (2015).

    Article  ADS  Google Scholar 

  10. N. A. Inogamov, V. V. Zhakhovskii, S. I. Ashitkov, Yu. V. Petrov, M. B. Agranat, S. I. Anisimov, K. Nishikhara, and V. E. Fortov, J. Exp. Theor. Phys. 107, 1 (2008).

    Article  ADS  Google Scholar 

  11. M. E. Povarnitsyn, T. E. Itina, M. Sentis, K. V. Khishchenko, and P. R. Levashov, Phys. Rev. B 75, 235414 (2007).

    Article  ADS  Google Scholar 

  12. P. A. Danilov, D. A. Zayarny, A. A. Ionin, S. I. Kudryashov, Ch. T. Kh. Nguen, A. A. Rudenko, I. N. Saraeva, A. A. Kuchmizhak, O. B. Vitrik, and Yu. N. Kul’chin, JETP Lett. 103, 549 (2016).

    Article  ADS  Google Scholar 

  13. N. A. Smirnov, S. I. Kudryashov, P. A. Danilov, A. A. Rudenko, A. A. Ionin, and A. A. Nastulyavichus, JETP Lett. 108, 368 (2018).

    Article  ADS  Google Scholar 

  14. N. A. Inogamov, V. A. Khokhlov, and V. V. Zhakhovskii, JETP Lett. 108, 439 (2018).

    Article  ADS  Google Scholar 

  15. S. A. Romashevskiy, P. A. Tsygankov, S. I. Ashitkov, and M. B. Agranat, Appl. Phys. A 124, 376 (2018).

    Article  ADS  Google Scholar 

  16. B. Gaković, S. Petrović, C. Albu, M. Zamfirescu, P. Panjan, D. Milovanović, G. Popescu-Pelin, and I. N. Mihailescu, Opt. Laser Technol. 89, 200 (2017).

    Article  ADS  Google Scholar 

  17. B. Gaković, G. D. Tsibidis, E. Skoulas, S. M. Petrović, B. Vasić, and E. Stratakis, J. Appl. Phys. 122, 223106 (2017).

    Article  ADS  Google Scholar 

  18. S. I. Kudryashov, B. Gakovic, P. A. Danilov, S. M. Petrovic, D. Milovanovic, A. A. Rudenko, and A. A. Ionin, Appl. Phys. Lett. 112, 023103 (2018).

    Article  ADS  Google Scholar 

  19. S. Petrović, B. Gaković, M. Zamfirescu, C. Radu, D. Peruško, B. Radak, C. Ristoscu, S. Zdravković, C. L. Luculescu, and I. N. Mihailescu, Appl. Surf. Sci. 417, 16 (2017).

    Article  ADS  Google Scholar 

  20. A. Naghilou, M. He, J. S. Schubert, L. V. Zhigilei, and W. Kautek, Phys. Chem. Chem. Phys. 21, 11846 (2019).

    Article  Google Scholar 

  21. R. D. Murphy, B. Torralva, and S. M. Yalisove, Appl. Phys. Lett. 102, 181602 (2013).

    Article  ADS  Google Scholar 

  22. J. Roth, H.-R. Trebin, A. Kiselev, and D.-M. Rapp, Appl. Phys. A 122, 500 (2016).

    Article  ADS  Google Scholar 

  23. V. Turlo, O. Politano, and F. Baras, J. Appl. Phys. 121, 055304 (2017).

    Article  ADS  Google Scholar 

  24. N. A. Inogamov, V. V. Zhakhovsky, V. A. Khokhlov, Yu. V. Petrov, and K. P. Migdal, Nanoscale Res. Lett. 11, 177 (2016).

    Article  ADS  Google Scholar 

  25. S. Zhou, K. Zhao, and H. Shen, Opt. Laser Technol. 132, 106495 (2020).

    Article  Google Scholar 

  26. V. V. Shepelev and N. A. Inogamov, J. Phys: Conf. Ser. 946, 012010 (2018).

    Google Scholar 

  27. S. I. Ashitkov, N. A. Inogamov, V. V. Zhakhovskii, Yu. N. Emirov, M. B. Agranat, I. I. Oleinik, S. I. Anisimov, and V. E. Fortov, JETP Lett. 95, 176 (2012).

    Article  ADS  Google Scholar 

  28. S. I. Ashitkov, S. A. Romashevskii, P. S. Komarov, A. A. Burmistrov, V. V. Zhakhovskii, N. A. Inogamov, and M. B. Agranat, Quantum Electron. 45, 547 (2015).

    Article  ADS  Google Scholar 

  29. J. M. Liu, Opt. Lett. 7, 196 (1982).

    Article  ADS  Google Scholar 

  30. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, Appl. Opt. 2, 744 (1987).

    Article  ADS  Google Scholar 

  31. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, Appl. Opt. 37, 5271 (1998).

    Article  ADS  Google Scholar 

  32. E. V. Struleva, P. S. Komarov, and S. I. Ashitkov, High Temp. 57, 659 (2019).

    Article  Google Scholar 

  33. N. A. Inogamov, V. V. Zhakhovsky, S. I. Ashitkov, V. A. Khokhlov, V. V. Shepelev, P. S. Komarov, A. V. Ovchinnikov, D. S. Sitnikov, Yu. V. Petrov, M. B. Agranat, S. I. Anisimov, and V. E. Fortov, Contrib. Plasma Phys. 51, 367 (2011).

    Article  ADS  Google Scholar 

  34. Yu. V. Petrov, N. A. Inogamov, and K. P. Migdal, JETP Lett. 97, 20 (2013).

    Article  ADS  Google Scholar 

  35. Yu. V. Petrov and N. A. Inogamov, JETP Lett. 98, 278 (2013).

    Article  ADS  Google Scholar 

  36. S. I. Anisimov, N. A. Inogamov, Yu. V. Petrov, V. A. Khokhlov, V. V. Zhakhovskii, K. Nishihara, M. B. Agranat, S. I. Ashitkov, and P. S. Komarov, Appl. Phys. A 92, 939 (2008).

    Article  ADS  Google Scholar 

  37. N. A. Inogamov, V. V. Zhakhovskii, and V. A. Khokhlov, J. Exp. Theor. Phys. 127, 79 (2018).

    Article  ADS  Google Scholar 

  38. A. E. Mayer and P. N. Mayer, J. Appl. Phys. 118, 035903 (2015).

    Article  ADS  Google Scholar 

  39. P. N. Mayer and A. E. Mayer, J. Appl. Phys. 124, 035901 (2018).

    Article  ADS  Google Scholar 

  40. B. J. Demaske, V. V. Zhakhovsky, N. A. Inogamov, and I. I. Oleynik, Phys. Rev. B 87, 054109 (2013).

    Article  ADS  Google Scholar 

  41. N. A. Inogamov, V. V. Zhakhovskii, S. I. Ashitkov, V. A. Khokhlov, Yu. V. Petrov, P. S. Komarov, M. B. Agranat, S. I. Anisimov, and K. Nishihara, Appl. Surf. Sci. 255, 9712 (2009).

    Article  ADS  Google Scholar 

  42. A. V. Bushman, G. I. Kanel’, A. L. Ni, and V. E. Fortov, Intense Dynamic Loading of Condensed Matter (Taylor and Francis, Washington, D.C., 1993).

    Google Scholar 

  43. K. V. Khishchenko, S. I. Tkachenko, P. R. Levashov, I. V. Lomonosov, and V. S. Vorobev, Int. J. Thermophys. 23, 1359 (2002).

    Article  Google Scholar 

  44. I. V. Lomonosov, Laser Part. Beams 25, 567 (2007).

    Article  ADS  Google Scholar 

Download references

Funding

S.A. Romashevskiy, S.I. Ashitkov, P.S. Komarov, and E.V. Struleva (experimental part) and V.A. Zhakhovsky, N.A. Inogamov, and A.N. Parshikov (theoretical part) acknowledge the support of the Russian Science Foundation (project no. 19-19-00697) and the Ministry of Science and Higher Education of the Russian Federation (project no. 075-15-2020-801). V.A. Khokhlov and Yu.V. Petrov (hydrodynamic simulation) acknowledge the support of the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2020-785 with Joint Institute for High Temperatures, Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Romashevskiy.

Additional information

Translated by R. Tyapaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romashevskiy, S.A., Khokhlov, V.A., Ashitkov, S.I. et al. Femtosecond Laser Irradiation of a Multilayer Metal–Metal Nanostructure. Jetp Lett. 113, 308–316 (2021). https://doi.org/10.1134/S002136402105009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002136402105009X

Navigation