Skip to main content

Advertisement

Log in

Cognitive performance detection using entropy-based features and lead-specific approach

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Detecting cognitive performance during mental arithmetic allows researchers to observe and identify the brain’s response to stimuli. Existing non-invasive methods for automated cognitive performance detection need improvements in terms of accuracy. In this work, a novel approach for cognitive performance has been proposed which uses short-duration electroencephalography (EEG) signal (4.094 s). Stationary wavelet transform (SWT) has been used to decompose the signal followed by extraction of entropy-based features and classification using selected attributes. To tackle the imbalanced data issue, adaptive synthetic sampling approach has been used. The proposed technique works in two modes: multi-lead approach (MLA), where EEG signal from multiple leads was used, and a novel lead-specific approach (LSA), where EEG signal from a single lead (F4) was used. A high accuracy of 94.00% in MLA and 93.70% in LSA reflects reliability of the proposed technique. The use of short-duration single-lead EEG signal makes this technique suitable for continuous monitoring system of cognitive performance during mental workload.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Stress, H.W.M.: Campaign guide: managing stress and psychosocial risks at work. Osha, European agency for safety health at work (2013)

  2. Alberdi, A., Aztiria, A., Basarab, A.: Towards an automatic early stress recognition system for office environments based on multimodal measurements: a review. J. Biomed. Inform. 59, 49–75 (2016)

    Article  Google Scholar 

  3. Duman, R.S.: Neurobiology of stress, depression, and rapid acting antidepressants: remodeling synaptic connections. Depress. Anxiety 31(4), 291–296 (2014)

    Article  Google Scholar 

  4. Espinosa-Garcia, C., Sayeed, I., Yousuf, S., Atif, F., Sergeeva, E.G., Neigh, G.N., Stein, D.G.: Abstract TP83: stress exacerbates global ischemia-induced inflammatory response: intervention by progesterone. Stroke 48(Suppl-1), ATP183 (2017)

    Google Scholar 

  5. Sharma, N., Gedeon, T.: Objective measures, sensors and computational techniques for stress recognition and classification: a survey. Comput. Methods Progr. Biomed. 108(3), 1287–1301 (2012)

    Article  Google Scholar 

  6. Subhani, A.R., Mumtaz, W., Saad, M.N.B.M., Kamel, N., Malik, A.S.: Machine learning framework for the detection of mental stress at multiple levels. IEEE Access 5, 13545–13556 (2017)

    Article  Google Scholar 

  7. Gowrisankaran, S., Nahar, N.K., Hayes, J.R., Sheedy, J.E.: Asthenopia and blink rate under visual and cognitive loads. Optom. Vis. Sci. 89(1), 97–104 (2012)

    Article  Google Scholar 

  8. Deschênes, A., Forget, H., Daudelin-Peltier, C., Fiset, D., Blais, C.: Facial expression recognition impairment following acute social stress. J. Vis. 15(12), 1383–1383 (2015)

    Article  Google Scholar 

  9. Wielgosz, J., Schuyler, B.S., Lutz, A., Davidson, R.J.: Long-term mindfulness training is associated with reliable differences in resting respiration rate. Sci. Rep. 6, 27533 (2016)

    Article  Google Scholar 

  10. Paiva, J.S., Rodrigues, S., Cunha, J.P.S.: Changes in ST, QT and RR ECG intervals during acute stress in firefighters: a pilot study. In: 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), vol. 2016, pp. 3378–3381 . IEEE (2016)

  11. He, J., Li, K., Liao, X., Zhang, P., Jiang, N.: Real-time detection of acute cognitive stress using a convolutional neural network from electrocardiographic signal. IEEE Access 7, 42710–42717 (2019)

    Article  Google Scholar 

  12. Healey, J.A., Picard, R.W.: Detecting stress during real-world driving tasks using physiological sensors. IEEE Trans. Intell. Transp. Syst. 6(2), 156–166 (2005)

    Article  Google Scholar 

  13. Dedovic, K., Renwick, R., Mahani, N.K., Engert, V., Lupien, S.J., Pruessner, J.C.: The montreal imaging stress task: using functional imaging to investigate the effects of perceiving and processing psychosocial stress in the human brain. J. Psychiatry Neurosci. 30(5), 319 (2005)

    Google Scholar 

  14. Zyma, I., Tukaev, S., Seleznov, I., Kiyono, K., Popov, A., Chernykh, M., Shpenkov, O.: Electroencephalograms during mental arithmetic task performance. Data 4(1), 14 (2019)

    Article  Google Scholar 

  15. Goldberger, P., et al.: PhysioBank, Physionet: components of a new research resource for complex physiologic signals. Circulation 101(13), e215–e220 (2000)

    Google Scholar 

  16. Jatoi, N.-A., Kyvelou, S.-M., Feely, J.: The acute effects of mental arithmetic, cold pressor and maximal voluntary contraction on arterial stiffness in young healthy subjects. Artery Res. 8(2), 44–50 (2014)

    Article  Google Scholar 

  17. Finlay, M.C., Lambiase, P.D., Ben-Simon, R., Taggart, P.: Effect of mental stress on dynamic electrophysiological properties of the endocardium and epicardium in humans. Heart Rhythm 13(1), 175–182 (2016)

    Article  Google Scholar 

  18. Noto, Y., Sato, T., Kudo, M., Kurata, K., Hirota, K.: The relationship between salivary biomarkers and state-trait anxiety inventory score under mental arithmetic stress: a pilot study. Anesth. Analg. 101(6), 1873–1876 (2005)

    Article  Google Scholar 

  19. Sharma, L., Sunkaria, R.: Myocardial infarction detection and localization using optimal features based lead specific approach. IRBM 41(1), 58–70 (2020)

    Article  Google Scholar 

  20. García-Martínez, B., Martínez-Rodrigo, A., Zangróniz, R., Pastor, J., Alcaraz, R.: Symbolic analysis of brain dynamics detects negative stress. Entropy 19(5), 196 (2017)

    Article  Google Scholar 

  21. Jie, X., Cao, R., Li, L.: Emotion recognition based on the sample entropy of EEG. Bio-Med. Mater. Eng. 24(1), 1185–1192 (2014)

    Article  Google Scholar 

  22. Acharya, U.R., Fujita, H., Sudarshan, V.K., Bhat, S., Koh, J.E.: Application of entropies for automated diagnosis of epilepsy using EEG signals: a review. Knowl.-Based Syst. 88, 85–96 (2015)

    Article  Google Scholar 

  23. Kannathal, N., Choo, M.L., Acharya, U.R., Sadasivan, P.: Entropies for detection of epilepsy in EEG. Comput. Methods Progr. Biomed. 80(3), 187–194 (2005)

    Article  Google Scholar 

  24. He, H., Bai, Y., Garcia, E.A., Li, S.: ADASYN: adaptive synthetic sampling approach for imbalanced learning. In: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp. 1322–1328. IEEE (2008)

  25. Webb, A.R.: Statistical Pattern Recognition. Wiley, Hoboken (2003)

    MATH  Google Scholar 

  26. Yang, X., Gao, M., Shi, J., Ye, H., Chen, S.: Modulating the activity of the dlpfc and ofc has distinct effects on risk and ambiguity decision-making: a tdcs study. Front. Psychol. 8, 1417 (2017)

    Article  Google Scholar 

  27. Lin, C.-T., King, J.-T., Fan, J.-W., Appaji, A., Prasad, M.: The influence of acute stress on brain dynamics during task switching activities. IEEE Access 6, 3249–3255 (2017)

    Article  Google Scholar 

  28. Vanitha, V., Krishnan, P.: Real time stress detection system based on EEG signals. Biomed. Res. Special Issue: S271–S275 (2016)

  29. Hou, X., Liu, Y., Sourina, O., Tan, Y.R.E., Wang, L., Mueller-Wittig, W.: EEG based stress monitoring. In: 2015 IEEE International Conference on Systems, Man, and Cybernetics, pp. 3110–3115. IEEE (2015)

  30. Jebelli, H., Hwang, S., Lee, S.: EEG-based workers’ stress recognition at construction sites. Autom. Constr. 93, 315–324 (2018)

    Article  Google Scholar 

  31. Xin, L., Zetao, C., Yunpeng, Z., Jiali, X., Shuicai, W., Yanjun, Z.: Stress state evaluation by an improved support vector machine. Neurophysiology 48(2), 86–92 (2016)

    Article  Google Scholar 

  32. Al-Shargie, F., Tang, T.B., Badruddin, N., Kiguchi, M.:Mental stress quantification using EEG signals. In: International Conference for Innovation in Biomedical Engineering and Life Sciences, pp. 15–19. Springer (2015)

  33. García-Martínez, B., Martínez-Rodrigo, A., Zangróniz Cantabrana, R., PastorGarcía, J., Alcaraz, R.: Application of entropy-based metrics to identify emotional distress from electroencephalographic recordings. Entropy 18(6), 221 (2016)

    Article  MathSciNet  Google Scholar 

  34. Villarejo, M.V., Zapirain, B.G., Zorrilla, A.M.: A stress sensor based on galvanic skin response (GSR) controlled by zigbee. Sensors 12(5), 6075–6101 (2012)

    Article  Google Scholar 

  35. Dehzangi, O., Sahu, V., Rajendra, V., Taherisadr, M.: Gsr-based distracted driving identification using discrete & continuous decomposition and wavelet packet transform. Smart Health 14, 100085 (2019)

    Article  Google Scholar 

  36. Kurniawan, H., Maslov, A.V., Pechenizkiy, M.: Stress detection from speech and galvanic skin response signals. In: Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems, pp. 209–214. IEEE (2013)

  37. Munla, N., Khalil, M., Shahin, A., Mourad, A.: Driver stress level detection using HRV analysis. In: 2015 International Conference on Advances in Biomedical Engineering (ICABME), pp. 61–64. IEEE (2015)

  38. Yaribeygi, H., Panahi, Y., Sahraei, H., Johnston, T.P., Sahebkar, A.: The impact of stress on body function: a review. EXCLI J. 16, 1057 (2017)

    Google Scholar 

  39. Regula, M., Socha, V., Kutilek, P., Socha, L., Hana, K., Hanakova, L., Szabo, S.: Study of heart rate as the main stress indicator in aircraft pilots. In: Proceedings of the 16th International Conference on Mechatronics-Mechatronika 2014, pp. 639–643. IEEE (2014)

  40. Andersson, D.: Real-time ECG for objective stress level measurement. Digitala Vetenskapliga Arkivet, master thesis, (Department of Biomedical Engineering) Linkoping University (2017)

  41. Dong, J., Han, Z., Zhao, Y., Wang, W., Prochazka, A., Chambers, J.: Sparse analysis model based multiplicative noise removal with enhanced regularization. Signal Process. 137, 160–176 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work is funded under TEQIP-III, CRS application ID: 1-5730990370.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakhan Dev Sharma.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, L.D., Saraswat, R.K. & Sunkaria, R.K. Cognitive performance detection using entropy-based features and lead-specific approach. SIViP 15, 1821–1828 (2021). https://doi.org/10.1007/s11760-021-01927-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-021-01927-0

Keywords

Navigation