Skip to main content

Advertisement

Log in

A new blast wave scaling

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

A new scaling is developed for both air and underwater blast waves based on dimensional analysis. The new length, time, velocity, and pressure scales are based on three control parameters: the energy release of the explosive \(E_{_\mathrm {HE}}\), the density of the undisturbed ambient medium \(\rho _{_0}\), and the speed of sound in the undisturbed ambient medium \(C_{_0}\). The shock wave propagation is divided into two regimes based on its decay characteristics, and the resulting control parameters are different in each regime. For strong shocks with Mach numbers \(M_{_\mathrm {SW}} \gtrsim 5\), the increase in the shock wave radius R with time t is approximated by a power law with an exponent of 2/5 as previously described by G. I. Taylor. Shock propagation in this regime is shown to not be a function of the ambient medium sound speed, but only the ambient medium density, explosive energy release, and time. For weak shock waves with Mach numbers \(M_{_\mathrm {SW}} \lesssim 5\), the shock wave radius increase with time can be approximated by a linear function plus a logarithmic-type correction which decays to a sound wave at sufficiently long time. Shock propagation in this regime is scaled according to the medium’s ambient density, sound speed, explosive energy release, and time. The new scaling is compared to, and agrees well with, published experimental data for air and underwater blasts, from milligram explosions to nuclear blasts. The new scaling improves upon traditional Hopkinson and Sachs scaling by relating shock propagation in liquid and gas environments, allowing them to be scaled to a single functional relationship. The functional scaling relationships developed here are dimensionless.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Taylor, G.I.: The formation of a blast wave by a very intense explosion. II. The atomic explosion of 1945. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 201(1065), 175–186 (1950). https://doi.org/10.1098/rspa.1950.0050

    Article  MATH  Google Scholar 

  2. Goodman, H.J.: Compiled free-air blast data on bare spherical pentolite. Technical Report 1092, Ballistic Research Laboratory (1960)

  3. Kingery, C.N., Keefer, J.H., Day, J.D.: Surface air blast measurements from a 100-ton TNT detonation. Technical Report 1410, Ballistic Research Laboratory (1962)

  4. Dewey, J.M.: Expanding spherical shocks (blast waves). In: Ben-Dor, G., Igra, O., Elperin, E. (eds.) Handbook of Shock Waves, vol. 2, pp. 441–481. Academic Press, San Diego (2001)

    Chapter  Google Scholar 

  5. Kleine, H., Dewey, J.M., Ohashi, K., Mizukaki, T., Takayama, K.: Studies of the TNT equivalence of silver azide charges. Shock Waves 13(2), 123–138 (2003). https://doi.org/10.1007/s00193-003-0204-3

    Article  Google Scholar 

  6. Dewey, J.M., McMillin, D.J., Classen, D.F.: Photogrammetry of spherical shocks reflected from real and ideal surfaces. J. Fluid Mech. 81, 701–717 (1977). https://doi.org/10.1017/S0022112077002304

    Article  Google Scholar 

  7. Dewey, J.M.: The properties of a blast wave obtained from an analysis of the particle trajectories. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 324(1558), 275–299 (1971). https://doi.org/10.1098/rspa.1971.0140

    Article  Google Scholar 

  8. Kleine, H.: Filming the invisible-time-resolved visualization of compressible flows. Eur. Phys. J. Spec. Top. 182(1), 3–34 (2010). https://doi.org/10.1140/epjst/e2010-01223-2

    Article  Google Scholar 

  9. Hargather, M.J., Settles, G.S.: Optical measurement and scaling of blasts from gram-range explosive charges. Shock Waves 17(4), 215–223 (2007). https://doi.org/10.1007/s00193-007-0108-8

    Article  Google Scholar 

  10. Hargather, M.J.: Background-oriented schlieren diagnostics for large-scale explosive testing. Shock Waves 23(5), 529–536 (2013). https://doi.org/10.1007/s00193-013-0446-7

    Article  Google Scholar 

  11. Hopkinson, B.: British ordnance board minutes 13565. The National Archives, Kew, UK 11 (1915)

  12. Cranz, K.J.: Lehrbuch der Ballistik. Springer, Berlin (1936)

    MATH  Google Scholar 

  13. Buckingham, E.: The principle of similitude. Nature 96(2406), 396–397 (1915). https://doi.org/10.1038/096396d0

    Article  MATH  Google Scholar 

  14. Bridgman, P.W.: Dimensional Analysis. Yale University Press, London (1922)

    Google Scholar 

  15. Sedov, L.I.: Similarity and Dimensional Methods in Mechanics. CRC Press, Boca Raton (1959)

    MATH  Google Scholar 

  16. Baker, W.E., Westine, P.S., Dodge, F.T.: Similarity Methods in Engineering Dynamics: Theory and Practice of Scale Modeling. Spartan Books (1973)

  17. Barenblatt, G.I.: Dimensional Analysis. Gordon and Breach Science Publisher, New York (1987)

    Google Scholar 

  18. Churchill, S.W.: Turbulent flow and convection: the prediction of turbulent flow and convection in a round tube. Adv. Heat Transf. 34, 255–361 (2001). https://doi.org/10.1016/S0065-2717(01)80013-7

    Article  Google Scholar 

  19. Rayleigh, L.: The principle of similitude. Nature 95, 66–68 (1915). https://doi.org/10.1038/095066c0

    Article  Google Scholar 

  20. Cooper, P.: W: Explosives Engineering. Wiley-VCH, Hoboken (1996)

    Google Scholar 

  21. Sachs, R.G.: The dependence of blast on ambient pressure and temperature. Technical Report 466, Ballistic Research Laboratories (1944)

  22. Dewey, J.M.: The TNT equivalence of an optimum propane–oxygen mixture. J. Phys. D Appl. Phys. 38(23), 4245 (2005). https://doi.org/10.1088/0022-3727/38/23/017

    Article  Google Scholar 

  23. Schmitt, D.T.: Position and volume estimation of atmospheric nuclear detonations from video reconstruction. PhD Thesis, Air Force Institute of Technology (2016)

  24. Itoh, S., Hamashima, H., Murata, K., Kato, Y.: Determination of JWL parameters from underwater explosion test. 12th International Detonation Symposium, vol. 281 (2002)

  25. Kira, A., Fujita, M., Itoh, S.: Underwater explosion of spherical explosives. J. Mater. Process. Technol. 85(1–3), 64–68 (1999). https://doi.org/10.1016/S0924-0136(98)00257-X

    Article  Google Scholar 

  26. Porzel, F.: Close-in time of arrival of underwater shock wave. Technical Report AD-361919, IIT Research Institute (1957)

  27. Bethe, H.A., Fuchs, K., Hirschfelder, J.O., Magee, J.L., von Neumann, R.: Blast wave. Technical Report LA-2000, Los Alamos Scientific Laboratory (1947)

  28. Kamm, J.R.: Evaluation of the Sedov–von Neumann–Taylor blast wave solution. Technical Report LA-UR-00-6055, Los Alamos National Laboratory (2000)

  29. Brinkley Jr., S.R., Kirkwood, J.G.: Theory of the propagation of shock waves. Phys. Rev. 71(9), 606 (1947). https://doi.org/10.1103/PhysRev.72.1109

    Article  MathSciNet  MATH  Google Scholar 

  30. Kinney, G.F., Graham, K.J.: Explosive Shocks in Air. Springer, Berlin (1985)

    Book  Google Scholar 

  31. Dewey, J.M.: Measurement of the physical properties of blast waves. In: Igra, O., Seiler, F. (eds.) Experimental Methods of Shock Wave Research, pp. 53–86. Springer, Berlin (2016). https://doi.org/10.1007/978-3-319-23745-9

    Chapter  Google Scholar 

  32. Cole, R.H.: Underwater Explosions. Princeton University Press, Princeton (1948)

    Book  Google Scholar 

  33. Slifko, J.F.: Pressure-pulse characteristics of deep explosions as functions of depth and range. Technical Report 67-87, Naval Ordnance Laboratory (1967)

  34. Swisdak Jr., M.M.: Explosion effects and properties. Part II. Explosion effects in water. Technical Report 76-116, Naval Surface Weapons Center, White Oak Laboratory (1978)

Download references

Acknowledgements

Portions of this work were funded by DTRA grant HDTRA1-18-1-0022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Hargather.

Additional information

Communicated by C. Needham.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, T., Hargather, M.J. A new blast wave scaling. Shock Waves 31, 231–238 (2021). https://doi.org/10.1007/s00193-021-01012-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-021-01012-y

Keywords

Navigation