Skip to main content
Log in

Equivalent electromagnetic parameters extraction method for graded honeycomb absorbing materials

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

An extraction method for the equivalent electromagnetic parameters (EEP) of grading honeycomb absorbing materials (GHAM) is proposed based on the asymmetric property of GHAM, EEP was modified by gradient factors related to its physical parameters in this paper. Considering that the strength of electromagnetic wave loss is dominated by the imaginary part of the complex dielectric constant, the EEP extraction method is built by optimizing the imaginary part of the complex dielectric constant according to the GHAM’s physical properties, such as the coating thickness of each layer for the GHAM, the increment between two adjacent gradient coatings, the layers of the GHAM, and the total axial height of graded honeycomb. The GHAM were prepared by the immersion process, and the reflectance measured by the free space method was consistent with that calculated by the EEP extraction method proposed in this paper within 2–18 GHz. The proposed EEP extraction method is simple, convenient, high precision, and it has played a certain role in solving the problems in actual engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data and materials availability

All data needed to evaluate the conclusions in the paper are present in the paper. Additional data related to this paper may be requested from the authors.

References

  1. U.K. Vaidya, M.V. Kamath, H. Mahfuz, S. Jeelani, Low velocity impact response of resin infusion molded foam filled honeycomb sandwich composites. J. Reinf. Plast. Compos. 17(9), 819–849 (1998)

    Article  Google Scholar 

  2. F.C. Smith, F. Scarpa, Design of honeycomb-like composites for electromagnetic and structural applications. IEE. Proc. Sci. Meas. Technol. 151(1), 9–15 (2004)

    Article  Google Scholar 

  3. Y.B. Feng, T. Qiu, Measurement of electromagnetic parameters for microwave absorbing materials using transmission /reflection method. Chin. J. Radio. 21(2), 293–297 (2006)

    Google Scholar 

  4. N. Quievy et al., Electromagnetic absorption properties of carbon nanotube nanocomposite foam filling honeycomb waveguide structures. IEEE Trans. Electromagn. Compat. 54(1), 43–51 (2012)

    Article  Google Scholar 

  5. L.H. Yam, Y.J. Yan, L. Cheng, J.S. Jiang, Identification of complex crack damage for honeycomb sandwich plate using wavelet analysis and neural networks. Smart Mater. Struct. 12(5), 661–671 (2003)

    Article  ADS  Google Scholar 

  6. J.H. Shin, W.H. Choi, C.G. Kim, W.J. Lee, W.Y. Lee, T.H. Song, Design of broadband microwave absorber using honeycomb structure. Electron. Lett. 50(4), 292–293 (2014)

    Article  ADS  Google Scholar 

  7. N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla, Perfect metamaterial absorber. Phys. Rev. Lett. 100(20), 207–402 (2008)

    Article  Google Scholar 

  8. C.G. Hu, X. Li, Q. Feng, X.N. Chen, X.G. Luo, Investigation on the role of the dielectric loss in metamaterial absorber. Opt. Express 18(7), 6598–6603 (2010)

    Article  ADS  Google Scholar 

  9. Y.Z. Cheng, Y. Nie, X. Wang, R.Z. Gong, Adjustable low frequency and broadband metamaterial absorber based on magnetic rubber plate and cross resonator. J. Appl. Phys. 115(6), 064902 (2014)

    Article  ADS  Google Scholar 

  10. Y. Shi, Z.Y. Li, L. Li, C.H. Liang, An electromagnetic parameters extraction method for metamaterials based on phase unwrapping technique. Waves Random Complex Media 26(4), 417–433 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  11. Y. Shi, T. Hao, L. Li, C.H. Liang, An improved NRW method to extract electromagnetic parameters of metamaterials. Microw. Opt. Technol. Lett. 58(3), 647–652 (2016)

    Article  Google Scholar 

  12. Y. Shi, Z.Y. Li, K. Li, L. Li, C.H. Liang, A retrieval method of effective electromagnetic parameters for inhomogeneous metamaterials. IEEE Trans. Microw. Theory Tech. 65(4), 1160–1178 (2017)

    Article  ADS  Google Scholar 

  13. K.V. Alexander, J.D. Borneman, X.J. Ni, V.M. Shalaev, V.P. Drachev, Bianisotropic effective parameters of optical metamagnetics and negative-index materials. Proc. IEEE 99(10), 1691–1700 (2011)

    Article  Google Scholar 

  14. Z.F. Li, K. Aydin, E. Ozbay, Retrieval of effective parameters for bianisotropic metamaterials with omega shaped metallic inclusions. Photonics Nanostruct. 10(3), 329–336 (2012)

    Article  ADS  Google Scholar 

  15. X.D. Chen, B.I. Wu, J.A. Kong, T.M. Grzegorczyk, Retrieval of the effective constitutive parameters of bianisotropic metamaterials. Phys. Rev. E 71(4), 046610 (2005)

    Article  ADS  Google Scholar 

  16. Z. Hashin, S.A. Shtrikman, A variational approach to the theory of the effective magnetic permeability of multiphase materials. J. Appl. Phys. 33(10), 3125–3131 (1962)

    Article  ADS  Google Scholar 

  17. L. Tsang, J.A. Kong, Scattering of electromagnetic waves from random media with strong permittivity fluctuations. Radio Sci. 16(3), 303–320 (1981)

    Article  ADS  Google Scholar 

  18. M. Johansson, C.L. Holloway, E.F. Kuester, Effective electromagnetic properties of honeycomb composites, and hollow-pyramidal and alternating-wedge absorbers. IEEE Trans. Antennas Propag. 53(2), 728–736 (2005)

    Article  ADS  Google Scholar 

  19. F.C. Smith, Effective permittivity of dielectric honeycombs. IEE Proc. Microw. Antennas Propag. 146(1), 55–59 (1999)

    Article  Google Scholar 

  20. Y.C. Zhao, J.F. Liu, Z.J. Song, X.L. Xi, Novel closed-form expressions for effective electromagnetic parameters of honeycomb radar-absorbing structure. IEEE Trans. Antennas Propag. 64(5), 1768–1778 (2016)

    Article  ADS  Google Scholar 

  21. H.Y. Chen et al., Closed-form representation for equivalent electromagnetic parameters of biaxial anisotropic honeycomb absorbing materials. Mater. Res. Express. 6(8), 085804 (2019)

    Article  ADS  Google Scholar 

  22. Y.C. Zhao, J.F. Liu, Z. Song, X.L. Xi, Novel design method for graded honeycomb radar absorbing structure based on dispersive effective permittivity formula. IEEE Antennas Wirel. Propag. Lett. 16, 1281–1284 (2017)

    Article  ADS  Google Scholar 

  23. P.H. Zhou et al., Prediction of microwave absorption behavior of graded honeycomb composites based on effective permittivity formulas. IEEE Trans. Antennas Propag. 63(8), 3496–3501 (2015)

    Article  ADS  Google Scholar 

  24. A.M. Nicolson, G.F. Ross, Measurement of the intrinsic properties of materials by time-domain techniques. IEEE Trans. Instrum. Meas. 19(4), 377–382 (1970)

    Article  Google Scholar 

  25. W.B. Weir, Automatic measurement of complex dielectric constant and permeability at microwave frequencies. Proc. IEEE 62(1), 33–36 (1974)

    Article  Google Scholar 

  26. J.J. Baker, E.J. Vanzura, W.A. Kissick, Improved technique for determining complex permittivity with the transmission/reflection method. IEEE Trans. Microw. Theory Tech. 38(8), 1096–1103 (1990)

    Article  ADS  Google Scholar 

  27. S.H. Jing, Q.X. Jiang, Coaxial line for material characterization using improved transmission/reflection method. J Funct. Mater. 36(12), 1985–1990 (2005)

    Google Scholar 

  28. D.A. Houtz, D. Gu, D.K. Walker, An improved two-port transmission line permittivity and permeability determination method with shorted sample. IEEE Trans. Microw. Theory Tech. 64(11), 3820–3827 (2016)

    Article  ADS  Google Scholar 

  29. J.R. Edward et al., Analysis of the Nicolson–Ross–Weir method for characterizing the electromagnetic properties of engineered materials. Prog. Electromagn. Res. 157, 31–47 (2016)

    Article  Google Scholar 

  30. M.Z. Wu, Z.S. Zhao, H.H. He, The reflection performance of anisotropic radar absorbing materials on electromagnetic wave. J. Huazhong Univ. Sci. Mater. Electromagn. Wave. 26(9), 82–83, 110 (1998)

    Google Scholar 

  31. H. Chen, X. Hou, L. Deng, Design of frequency-selective surfaces radome for a planar slotted waveguide antenna. IEEE Antennas Wirel. Propag. Lett. 8, 1231–1233 (2009)

    Article  ADS  Google Scholar 

  32. O. Büyüköztürk, T.-Y. Yu, A.O. Jose, A methodology for determining complex permittivity of construction materials based on transmission-only coherent, wide-bandwidth free-space measurements. Cem. Concr. Compos. 28(4), 349–359 (2006)

    Article  Google Scholar 

  33. F.X. Li et al., Compact high-efficiency broadband metamaterial polarizing reflector at microwave frequencies. IEEE Trans. Microw. Theory Tech. 67(2), 606–614 (2018)

    Article  ADS  Google Scholar 

  34. H. Luo, Y.Z. Cheng, Ultra-thin dual-band polarization-insensitive and wide-angle perfect metamaterial absorber based on a single circular sector resonator structure. J. Electron. Mater. 47(1), 323–328 (2018)

    Article  ADS  Google Scholar 

  35. H.Y. Chen, H.B. Zhang, L.J. Deng, Design of an ultra-thin magnetic-type radar absorber embedded with FSS. IEEE Antennas Wirel. Propag. Lett. 9, 899–901 (2010)

    Article  ADS  Google Scholar 

  36. Y.Z. Cheng, Z.Z. Cheng, X.S. Mao, R.Z. Gong, Ultra-thin multi-band polarization-insensitive microwave metamaterial absorber based on multiple-order responses using a single resonator structure. Materials. 10(11), 1241 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the National Natural Science Foundation of China (No. 51772042 and 52021001) and “111” Center (No. B13042), and partly supported by the Open Foundation of Key Laboratory of Multispectral Absorbing Materials and Structures, Ministry of Education (ZYGX2016K009-4), and partly supported by Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyan Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Shen, R., Li, F. et al. Equivalent electromagnetic parameters extraction method for graded honeycomb absorbing materials. Appl. Phys. B 127, 84 (2021). https://doi.org/10.1007/s00340-021-07630-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-021-07630-9

Navigation