Skip to main content
Log in

Fluidity, Microstructure, and Tensile Properties of Sub-rapidly Solidified Mg-6Al-4Zn-xSn (x = 0, 0.6, 1.2, 1.8) Alloy

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

In this paper, the influence of the Sn element on the melt viscosity, grain size, shrinkage, and tensile properties of the sub-rapidly solidified Mg-6Al-4Zn alloy was studied. The results showed that the melt viscosity of the Mg-6Al-4Zn alloy was greatly decreased because of the addition of Sn. As the content of Sn increased from 0 to 1.8 wt.%, the grain size of the alloy was refined, and the dendrite microstructure was changed to rose-shaped ones simultaneously. The decreased melt viscosity and refined microstructure were conductive to the feeding of melt, which contributed to the reduction in volume fraction of shrinkage. The volume fraction of shrinkage of the Mg-6Al-4Zn-1.2Sn alloy was reduced by 30.8%, compared with that of the alloy without Sn addition. Tensile properties of the Mg-6Al-4Zn-xSn alloys were increased firstly and then decreased with the augmented Sn content. The yield strength, ultimate tensile strength, and elongation of the alloy containing 1.2 wt.% Sn were 21.4%, 39.5%, and 259.0% higher than those of the alloy without Sn addition, respectively. The addition of Sn was considered to reduce the shrinkage of the sub-rapidly solidified Mg-6Al-4Zn magnesium alloy and thus improved its tensile properties. To identify the mechanism, the effect of Sn on the volume fraction of shrinkage was discussed from three aspects of melt viscosity, grain refinement, and volume fraction of eutectic phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. W.J. Joost, P.E. Krajewski, Scr. Mater. 128, 107 (2017)

    Article  CAS  Google Scholar 

  2. A.A. Luo, J. Magnes. Alloys 1, 2 (2013)

    Article  CAS  Google Scholar 

  3. K.R. Ravi, R.M. Pillai, K.R. Amaranathan, B.C. Pai, M. Chakraborty, J. Alloys Compd. 456, 201 (2008)

    Article  CAS  Google Scholar 

  4. P. Sharifi, Y. Fan, H.B. Anaraki, A. Banerjee, K. Sadayappan, J.T. Wood, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 47, 5159 (2016)

    Article  CAS  Google Scholar 

  5. X. Li, S.M. Xiong, Z. Guo, J. Mater. Sci. Technol. 32, 54 (2016)

    Article  CAS  Google Scholar 

  6. F. Wang, J.B. Li, J. Liu, D. Lv, P.L. Mao, Z. Liu, Acta Metall. Sin.-Engl. Lett. 27, 609 (2014)

    Article  CAS  Google Scholar 

  7. P. Sharifi, J. Jamali, K. Sadayappan, J.T. Wood, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 49, 3080 (2018)

    Article  CAS  Google Scholar 

  8. X. Li, S.M. Xiong, Z. Guo, J. Mater. Process. Technol. 231, 1 (2016)

    Article  CAS  Google Scholar 

  9. X.B. Li, S.M. Xiong, Z.P. Guo, Acta Metall. Sin.-Engl. Lett. 29, 619 (2016)

    Article  CAS  Google Scholar 

  10. M. Guanbao, A.V. Okhapkin, N.Y. Konstantinova, A.A. Sabirzyanov, P.S. Popel’, L. Pytsze, Russi. Metal. (Met.) 2013, 90 (2013)

    Article  Google Scholar 

  11. O. Sedighi, S.G. Shabestari, F. Yavari, Thermochim. Acta 667, 165 (2018)

    Article  CAS  Google Scholar 

  12. C.H. Ma, F.S. Pan, D.F. Zhang, A.T. Tang, Z.W. Lu, Acta Metall. Sin.-Engl. Lett. 34, 278 (2021)

    Article  CAS  Google Scholar 

  13. Q. Zhang, W. Liu, G. Wu, L. Zhang, W. Ding, Acta Metall. Sin.-Engl. Lett. 33, 1505 (2020)

    Article  CAS  Google Scholar 

  14. J.L. Du, A. Zhang, Z.P. Guo, M.H. Yang, M. Li, F. Liu, S.M. Xiong, J. Alloys Compd. 775, 322 (2019)

    Article  CAS  Google Scholar 

  15. J.K. Kim, S.H. Oh, K.C. Kim, W.T. Kim, D.H. Kim, Mater. Trans. 58, 963 (2017)

    Article  CAS  Google Scholar 

  16. X.Q. Pan, J.H. Chen, H.G. Yan, B. Su, J.Y. Wei, C. Fan, Mater. Sci. Technol. 29, 169 (2013)

    Article  CAS  Google Scholar 

  17. J.H. Chen, J.Y. Wei, H.G. Yan, B. Su, X.Q. Pan, Mater. Des. 45, 300 (2013)

    Article  CAS  Google Scholar 

  18. J. Wang, L.G. Wang, S.K. Guan, S.J. Zhu, C.X. Ren, S.S. Hou, J. Mater. Sci.-Mater. Med. 21, 2001 (2010)

    Article  CAS  Google Scholar 

  19. H.R. Zhang, Z.B. Liu, Z.Z. Li, G.W. Li, H. Zhang, Acta Metall. Sin.-Engl. Lett. 29, 414 (2016)

    Article  CAS  Google Scholar 

  20. H.P. Tang, Q.D. Wang, C. Lei, K. Wang, B. Ye, H.Y. Jiang, W.J. Ding, Acta Metall. Sin.-Engl. Lett. 32, 1549 (2019)

    Article  Google Scholar 

  21. Y. Fu, H. Wang, C. Zhang, H. Hao, Mat. Sci. Eng. A-Struct. 723, 118 (2018)

    Article  CAS  Google Scholar 

  22. B.K. Kang, I. Sohn, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 49, 5137 (2018)

    Article  CAS  Google Scholar 

  23. M.B. Yang, F.S. Pan, Mater. Des. 31, 68 (2010)

    Article  CAS  Google Scholar 

  24. Z. Zhang, A. Couture, A. Luo, Scr. Mater. 39, 45 (1998)

    Article  CAS  Google Scholar 

  25. X.G. Dong, J.W. Fu, J. Wang, Y.S. Yang, Mater. Des. 51, 567 (2013)

    Article  CAS  Google Scholar 

  26. V.B. Deev, E.S. Prusov, M. Shunqi, E.H. Ri, T.A. Bazlova, M.V. Temlyantsev, S.V. Smetanyuk, S.V. Ponomareva, K.N. Vdovin, Paper Presented at the International Workshop Advanced Technologies in Material Science, Mechanical and Automation Engineering (MIP)-Engineering, vol. 537 (IOP, England, 2019).

    Google Scholar 

  27. ASTM E112-13, Standard Test Methods for Determining Average Grain Size (West Conshohocken, PA, 2013)

  28. ASTM E1245-03, Standard Practice for Determining the Inclusion or Second- Phase Constituent Content of Metals by Automatic Image Analysis (West Conshohocken, PA, 2016)

  29. S. Morioka, Mat. Sci. Eng. A-Struct. 362, 223 (2003)

    Article  CAS  Google Scholar 

  30. F. Zhang, Y. Du, S.H. Liu, W.Q. Jie, Calphad 49, 79 (2015)

    Article  CAS  Google Scholar 

  31. L. Takamichi, I.L.G. Roderick, The Physical Properties of Liquid Metals (Clarendon Press, Oxford University, Oxford, 1988).

    Google Scholar 

  32. S. Morioka, J. Non-Cryst, Solids 341, 46 (2004)

    CAS  Google Scholar 

  33. Z.Y. Wang, Y.S. Yang, W.H. Tong, H.Q. Li, Z.Q. Hu, Acta Phys. Sin. 56, 1543 (2007)

    Article  CAS  Google Scholar 

  34. A.R. Miedema, J. Less-Common Met. 46, 67 (1976)

    Article  CAS  Google Scholar 

  35. A.R. Miedema, R. Boom, F.R. Deboer, J. Less-Common Met. 41, 283 (1975)

    Article  CAS  Google Scholar 

  36. N. Kayama, K. Murali, S. Kiguchi, H. Satoh, Rep. Cast. Rese. Lab. 27, 1 (1976)

    CAS  Google Scholar 

  37. Y.C. Lee, A.K. Dahle, D.H. StJohn, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 31, 2895 (2000)

    Article  Google Scholar 

  38. P.L. Zhang, Y.H. Zhao, R.P. Lu, Z.B. Ding, H. Hou, Acta Metall. Sin.-Engl. Lett. 32, 550 (2019)

    Article  CAS  Google Scholar 

  39. P.Y. Wang, B.Y. Wang, C. Wang, J.G. Wang, C.Y. Ma, J.S. Li, M. Zha, H.Y. Wang, Mat. Sci. Eng. A-Struct. 791, 139696 (2020)

    Article  CAS  Google Scholar 

  40. T. Cheng, L. Zhang, in Magnesium Technology 2020 ed. by J. B. Jordon, V. Miller, V. V. Joshi, N. R. Neelameggham. (Springer, Cham, 2020), pp. 269–279

  41. E. Doernberg, A. Kozlov, R. Schmid-Fetzer, J. Phase Equilib. Diff. 28, 523 (2007)

    Article  CAS  Google Scholar 

  42. M.W. Wu, S.M. Xiong, Acta Metall. Sin.-Engl. Lett. 46, 1534 (2010)

    CAS  Google Scholar 

  43. M.C. Flemings, presented at the F. Weinberg International Symposium on Solidification Processing (Pergamon, Oxford, 1990), p. 173

  44. J. Cui, T.J. Luo, C. Wang, Y.J. Li, X.H. Feng, Q.Y. Huang, Y.S. Yang, Adv. Eng. Mater. 23, 2000583 (2021)

    Article  CAS  Google Scholar 

  45. S. Shao, Y. Liu, C.S. Xu, Y.X. Xu, B. Wu, X.S. Zeng, X.F. Lu, X.J. Yang, Acta Metall. Sin.-Engl. Lett. 28, 7 (2015)

    Article  CAS  Google Scholar 

  46. Q. Zhang, L. Chen, Q. Le, Spec. Cast. Nonferr. Alloys 36, 777 (2016)

    CAS  Google Scholar 

  47. M. Gao, G. He, T. Huang, C. Wang, C. Wu, G. Yu, Paper presented at the Advanced Manufacturing Technology, vol. 472–475, (Trans. Tech., Switzerland, 2012) p. 1082

  48. Y. Fu, H. Wang, X.T. Liu, H. Hao, J. Rare Earth. 35, 503 (2017)

    Article  CAS  Google Scholar 

  49. X. Li, S.M. Xiong, Z. Guo, Mat. Sci. Eng. A-Struct. 672, 216 (2016)

    Article  CAS  Google Scholar 

  50. H.H. Yu, Y.C. Xin, M.Y. Wang, Q. Liu, J. Mater. Sci. Technol. 34, 248 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2017YFB0103904), the Key Research and Development Project of Liaoning Province (No. 2019JH2/10100008), the National Key Research and Development Program of China (No. 2018YFE115800), and the Key Research and Development Plan of Shandong Province (No. 2019JZZY020329).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuansheng Yang.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, J., Luo, T., Li, Y. et al. Fluidity, Microstructure, and Tensile Properties of Sub-rapidly Solidified Mg-6Al-4Zn-xSn (x = 0, 0.6, 1.2, 1.8) Alloy. Acta Metall. Sin. (Engl. Lett.) 34, 1265–1276 (2021). https://doi.org/10.1007/s40195-021-01247-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-021-01247-9

Keywords

Navigation