Skip to main content
Log in

Effect of the Means Used to Synthesize Bifunctional Fischer–Tropsch Catalysts on the Composition and Properties of Synthetic Fuels

  • CATALYSIS IN CHEMICAL AND PETROCHEMICAL INDUSTRY
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

The effect of the means used to synthesize bifunctional cobalt catalysts with HZSM-5 zeolite and a boehmite binder on the catalytic performance of Fischer–Tropsch (FT) synthesis is studied. The synthesized catalysts are characterized via BET, XRD, EDA, SEM, TEM, H2 TPD, and NH3 TPD. They are tested in hydrocarbon synthesis at a pressure of 2.0 MPa, a temperature of 240°C, and a gas hourly space velocity of 1000 h−1. It is shown that the hydrocarbon and fractional composition of the FT synthesis products can be controlled, depending on the means of catalyst synthesis. A promising composite catalyst system for the single-stage synthesis of a low–pour-point diesel fuel has been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Eliseev, O.L., Savost’yanov, A.P., Sulima, S.I., and Lapidus, A.L., Mendeleev Commun., 2018, vol. 28, no. 4, pp. 345–351. https://doi.org/10.1016/j.mencom.2018.07.001

    Article  CAS  Google Scholar 

  2. Khodakov, A.Y., Wei, C., and Fongarland, P., Chem. Rev., 2007, vol. 107, no. 5, pp. 1692–1744. https://doi.org/10.1021/cr050972v

    Article  CAS  PubMed  Google Scholar 

  3. Yang, G., Xing, C., Hirohama, W., Jin, Y., Zeng, C., Suehiro, Y., Wang, T., Yoneyama, Y., and Tsubaki, N., Catal. Today, 2013, vol. 215, pp. 29–35. https://doi.org/10.1016/j.cattod.2013.01.010

    Article  CAS  Google Scholar 

  4. Jin, Y., Yang, R., Mori, Y., Sun, J., Taguchi, A., Yoneyama, Y., Abe, T., and Tsubaki, N., Appl. Catal., A, 2013, vol. 456, pp. 75–81. https://doi.org/10.1016/j.apcata.2013.02.014

  5. Kang, S.-H., Ryu, J.-H., Kim, J.-H., Sai Prasad, P.S., Bae, J.W., Cheon, J.-Y., and Jun, K.-W., Catal. Lett., 2011, vol. 141, no. 10, pp. 1464–1471. https://doi.org/10.1007/s10562-011-0626-y

    Article  CAS  Google Scholar 

  6. Savost’yanov, A.P., Narochnyi, G.B., Yakovenko, R.E., Saliev, A.N., Sulima, S.I., Zubkov, I.N., Nekroenko, S.V., and Mitchenko, S.A., Pet. Chem., 2017, vol. 57, no. 12, pp. 1186–1189. https://doi.org/10.1134/S0965544117060251

    Article  Google Scholar 

  7. Sineva, L.V., Asalieva, E.Yu., and Mordkovich, V.Z., Russ. Chem. Rev., 2015, vol. 84, no. 11, pp. 1176–1189. https://doi.org/10.1070/RCR4464

    Article  CAS  Google Scholar 

  8. Feller, A., Guzman, A., Zuazo, I., and Lercher, J.A., J. Catal., 2004, vol. 224, no. 1, pp. 80–93. https://doi.org/10.1016/j.jcat.2004.02.019

    Article  CAS  Google Scholar 

  9. Lipin, P.V., Doronin, V.P., and Gulyaeva, T.I., Pet. Chem., 2010, vol. 50, no. 5, pp. 362–367. https://doi.org/10.1134/S0965544110050075

    Article  Google Scholar 

  10. Zhang, Q., Cheng, K., Kang, J., Deng, W., and Wang, Y., ChemSusChem, 2014, vol. 7, no. 5, pp. 1251–1264. https://doi.org/10.1002/cssc.201300797

    Article  CAS  PubMed  Google Scholar 

  11. Espinosa, G., Domínguez, J.M., Morales-Pacheco, P., Tobon, A., Aguilar, M., and Benítez, J., Catal. Today, 2011, vol. 166, no. 1, pp. 47–52. https://doi.org/10.1016/j.cattod.2011.01.025

    Article  CAS  Google Scholar 

  12. Majewska, J. and Michalkiewicz, B., Int. J. Hydrogen Energy, 2016, vol. 41, no. 20, pp. 8668–8678. https://doi.org/10.1016/j.ijhydene.2016.01.097

    Article  CAS  Google Scholar 

  13. Lee, D.-K., Kim, D.-S., Kim, T.-H., Lee, Y.-K., and Jeong, S.-E., Le, N.T., Cho, M.-J., and Henam, S.D., Catal. Today, 2010, vol. 154, nos. 3–4, pp. 237–243. https://doi.org/10.1016/j.cattod.2010.03.053

  14. Sartipi, S., Makkee, M., Kapteijn, F., and Gascon, J., Catal. Sci. Technol., 2014, vol. 4, no. 4, pp. 893–907. https://doi.org/10.1039/C3CY01021J

    Article  CAS  Google Scholar 

  15. Adeleke, A.A., Liu, X., Lu, X., Moyo, M., and Hildebrandt, D., Rev. Chem. Eng., 2020, vol. 36, no. 4, pp. 437–457. https://doi.org/10.1515/revce-2018-0012

    Article  CAS  Google Scholar 

  16. Lin, Q., Yang, G., Li, X., Yoneyama, Y., Wan, H., and Tsubaki, N., ChemCatChem, 2013, vol. 5, no. 10, pp. 3101–3106. https://doi.org/10.1002/cctc.201300336

    Article  CAS  Google Scholar 

  17. Sartipi, S., Parashar, K., Valero-Romero, M.J., Santos, V.P., der Linden, B., Makkee, M., Kapteijn, F., and Gascon, J., J. Catal., 2013, vol. 305, pp. 179–190. https://doi.org/10.1016/j.jcat.2013.05.012

    Article  CAS  Google Scholar 

  18. Zhu, C. and Bollas, G.M., Appl. Catal., B, 2018, vol. 235, pp. 92–102. https://doi.org/10.1016/j.apcatb.2018.04.063

    Article  CAS  Google Scholar 

  19. Kibby, C., Jothimurugesan, K., Das, T., Lacheen, H.S., Rea, T., and Saxton, R.J., Catal. Today, 2013, vol. 215, pp. 131–141. https://doi.org/10.1016/j.cattod.2013.03.009

    Article  CAS  Google Scholar 

  20. Cheng, S., Mazonde, B., Zhang, G., Javed, M., Dai, P., Cao, Y., Tu, S., Wu, J., Lu, C., Xing, C., and Shan, S., Fuel, 2018, vol. 223, pp. P. 354–359. https://doi.org/10.1016/j.fuel.2018.03.042

  21. Subramanian, V., Zholobenko, V.L., Cheng, K., Lancelot, C., Heyte, S., Thuriot, J., Paul, S., Ordomsky, V.V., and Khodakov, A.Y., ChemCatChem, 2016, vol. 8, no. 2, pp. 380–389. https://doi.org/10.1002/cctc.201500777

    Article  CAS  Google Scholar 

  22. Nakanishi, M., Uddin, Md.A., Kato, Y., Nishina, Y., and Hapipi, A.M., Catal. Today, 2017, vol. 291, pp. 124–132. https://doi.org/10.1016/j.cattod.2017.01.017

  23. De la Osa, A.R., Romero, A., Díez-Ramírez, J., Valverde, J.L., and Sánchez, P., Top. Catal., 2017, vol. 60, nos. 15–16, pp. 1082–1093. https://doi.org/10.1007/s11244-017-0792-2

  24. Li, Z., Wu, L., Han, D., and Wu, J., Fuel, 2018, vol. 220, pp. 257–263. https://doi.org/10.1016/j.fuel.2018.02.004

    Article  CAS  Google Scholar 

  25. Velichkina, L.M., Vosmerikova, L.N., Korobitsyna, L.L., Kanashevich, D.A., Vosmerikov, A.V., and Abdiyusupov, G.G., Neftepererab. Neftekhim., 2016, no. 1, pp. 13–19.

  26. Sartipi, S., Parashar, K., Makkee, M., Gascon, J., and Kapteijn, F., Catal. Sci. Technol., 2013, vol. 3, no. 3, pp. 572–575. https://doi.org/10.1039/C2CY20744C

    Article  CAS  Google Scholar 

  27. Sartipi, S., Alberts, M., Meijerink, M.J., Keller, T.C., Pérez-Ramírez, J., Gascon, J., and Kapteijn, F., ChemSusChem, 2013, vol. 6, no. 9, pp. 1646–1650. https://doi.org/10.1002/cssc.201300339

    Article  CAS  PubMed  Google Scholar 

  28. Yao, M., Yao, N., Liu, B., Li, S., Xu, L., and Li, X., Catal. Sci. Technol., 2015, vol. 5, no. 5, pp. 2821–2828. https://doi.org/10.1039/C5CY00017C

    Article  CAS  Google Scholar 

  29. Calleja, G., Lucas, A., and Grieken, R., Fuel, 1995, vol. 74, no. 3, pp. 445–451. https://doi.org/10.1016/0016-2361(95)93480-2

    Article  CAS  Google Scholar 

  30. Dalil, M., Sohrabi, M., and Royaee, S.J., J. Ind. Eng. Chem., 2012, vol. 18, no. 2, pp. 690–696. https://doi.org/10.1016/j.jiec.2011.11.114

    Article  CAS  Google Scholar 

  31. Englin, B.A., Primenenie zhidkikh topliv pri nizkikh temperaturakh (Application of Liquid Fuels at Low Temperatures), Moscow: Khimiya, 1980.

  32. Kinzul’, A.P., Khandarkhaev, S.V., Pisarenko, N.O., Buryukin, F.A., and Tverdokhlebov, V.P., Mir Nefteprod., 2012, no. 8, pp. 7–11.

  33. Tavasoli, A., Mortazavi, Y., Khodadadi, A.A., Mousavian, M.A., Sadagiani, K., and Karimi, A., Iran. J. Chem. Chem. Eng., 2005, vol. 24, no. 3, pp. 9–17.

    CAS  Google Scholar 

  34. Narochnyi, G.B., Savost’yanov, A.P., Yakovenko, R.E., and Bakun, V.G., Catal. Ind., 2016, vol. 8, no. 2, pp. 139–144. https://doi.org/10.1134/S2070050416020070

    Article  Google Scholar 

  35. Chu, W., Chernavskii, P.A., Gengembre, L., Pankina, G.A., Fongarland, P., and Khodakov, A.Y., J. Catal., 2007, vol. 252, no. 2, pp. 215–230. https://doi.org/10.1016/j.jcat.2007.09.018

    Article  CAS  Google Scholar 

  36. Savost’yanov, A.P., Yakovenko, R.E., Narochnyi, G.B., Zubkov, I.N., Sulima, S.I., Soromotin, V.N., and Mitchenko, S.A., Pet. Chem., 2020, vol. 60, no. 1, pp. 81–91. https://doi.org/10.1134/S0965544120010120

    Article  Google Scholar 

  37. PDF-2 Data Base, International Centre for Diffraction Data, 2012. https://www.icdd.com/pdf-2/. Cited February 23, 2021.

  38. Xu, D., Li, W., Duan, H., Ge, Q., and Xu, H., Catal. Lett., 2005, vol. 102, nos. 3–4, pp. 229–235. https://doi.org/10.1007/s10562-005-5861-7

  39. Jacobs, G., Das, T.K., Zhang, Y., Li, J., Racoillet, G., and Davis, B.H., Appl. Catal., A., 2002, vol. 233, nos. 1–2, pp. 263–281. https://doi.org/10.1016/S0926-860X(02)00195-3

  40. Parnian, M.J., Najafabadi, A.T., Mortazavi, Y., Khodadadi, A.A., and Nazzari, I., Appl. Surf. Sci., 2014, vol. 313, pp. 183–195. https://doi.org/10.1016/j.apsusc.2014.05.183

    Article  CAS  Google Scholar 

  41. Conte, M., Xu, B., Davies, T.E., Bartley, J.K., Carley, A.F., Taylor, S.H., Khalid, K., and Hutchings, G.J., Microporous Mesoporous Mater., 2012, vol. 164, pp. 207–213. https://doi.org/10.1016/j.micromeso.2012.05.001

    Article  CAS  Google Scholar 

  42. Pardo-Tarifa, F., Cabrera, S., Sanchez-Dominguez, M., and Boutonnet, M., Int. J. Hydrogen Energy, 2017, vol. 42, no. 15, pp. 9754–9765. https://doi.org/10.1016/j.ijhydene.2017.01.056

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

It was performed on equipment at Platov South Russian State Polytechnic University’s Nanotechnology shared resource center.

Funding

This work was supported by the Russian Science Foundation, project no. 19-73-00089.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. E. Yakovenko.

Additional information

Translated by M. Timoshinina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakovenko, R.E., Bakun, V.G., Zubkov, I.N. et al. Effect of the Means Used to Synthesize Bifunctional Fischer–Tropsch Catalysts on the Composition and Properties of Synthetic Fuels. Catal. Ind. 13, 38–47 (2021). https://doi.org/10.1134/S2070050421010116

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050421010116

Keywords:

Navigation