Skip to main content
Log in

On the Relationship between the Magnetic Field of a Low-Latitude Coronal Hole and Its Area

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

Based on the data obtained with the CHIMERA algorithm, we consider the evolution of a long-lived low-latitude coronal hole during its central meridian passage over the period from February 15, 2012, to October 14, 2012. The correlation coefficient between the photospheric magnetic field strength of the coronal hole and its area in nine Carrington rotations is \(R={-}0.55\). It differs noticeably from \(R={-}0.82\) given in Heinemann et al. The results suggest a significant dependence of the area of coronal holes on the method of determining their boundaries. This can have a noticeable effect both on the prediction of geomagnetic activity and on the understanding of the nature of solar phenomena related to these structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. S. A. Aivazyan, Statistical Study of Dependences (Metallurgiya, Moscow, 1968) [in Russian].

    Google Scholar 

  2. Z. S. Akhtemov and Yu. T. Tsap, Geomagn. Aeron. 58, 1149 (2018).

    Article  Google Scholar 

  3. Z. S. Akhtemov, Y. T. Tsap, and V. I. Haneychuk, Astrophysics 63, 399 (2020).

    Article  ADS  Google Scholar 

  4. S. Akiyama, N. Gopalswamy, S. Yashiro, and P. Makela, Publ. Astron. Soc. Jpn. 65, S15 (2013).

    Article  Google Scholar 

  5. I. A. Bilenko and K. S. Tavastsherna, Geomagn. Aeron. 57, 803 (2017).

    Article  ADS  Google Scholar 

  6. R. J. Bray and R. E. Loughhead, Sunspots (Chapman and Hall, London, 1964).

    Google Scholar 

  7. S. R. Cranmer, Space Sci. Rev. 101, 229 (2002).

    Article  ADS  Google Scholar 

  8. S. R. Cranmer, Liv. Rev. Solar Phys. 6, 3 (2009).

    ADS  Google Scholar 

  9. K. Fujiki, M. Tokumaru, T. Iju, K. Hakamada, and M. Kojima, Solar Phys. 290, 2491 (2015).

    Article  ADS  Google Scholar 

  10. T. M. Garton, P. T. Gallagher, and S. A. Murray, J. Space Weather Space Climate 8, 02 (2018).

  11. V. S. Gmurman, Probability Theory and Mathematical Statistics (Vysshaya Shkola, Moscow, 1972) [in Russian].

    MATH  Google Scholar 

  12. S. G. Heinemann, S. J. Hofmeister, A. M. Veronig, and M. Temmer, Astrophys. J. 863, 29 (2018).

    Article  ADS  Google Scholar 

  13. S. J. Hofmeister, A. Veronig, M. A. Reiss, M. Temmer, S. Vennerstrom, B. Vrsnak, and B. Heber, Astrophys. J. 835, 268 (2017).

    Article  ADS  Google Scholar 

  14. S. J. Hofmeister, D. Utz, S. G. Heinemann, A. Veronig, and M. Temmer, Astron. Astrophys. 629, A22 (2019).

    Article  ADS  Google Scholar 

  15. M. Kojima, M. Tokumaru, K. Fujiki, H. Itoh, T. Murakami, and K. Hakamada, in New Solar Physics with Solar-B Mission, Ed. by K. Shibata, S. Nagata, and T. Sakurai, ASP Conf. Ser. 369, 549 (2009).

    Google Scholar 

  16. D. F. Kong, G. M. Pan, X. L. Yan, J. C. Wang, and Q. L. Li, Astrophys. J. 863, L22 (2018).

    Article  ADS  Google Scholar 

  17. J. R. Lemen, A. M. Title, D. J. Akin, P. F. Boerner, C. Chou, J. F. Drake, D. W. Duncan, Ch. G. Edwards, et al., Solar Phys. 275, 17 (2012).

    Article  ADS  Google Scholar 

  18. Y. A. Nagovitsyn, A. A. Pevtsov, and A. A. Osipova, Astron. Nachr. 338, 26 (2017).

    Article  ADS  Google Scholar 

  19. J. T. Nolte, A. S. Krieger, A. F. Timothy, R. E. Gold, E. C. Roelof, G. Vaiana, A. J. Lazarus, and J. D. Sullivan, Solar Phys. 46, 303 (1976).

    Article  ADS  Google Scholar 

  20. V. N. Obridko and Yu. A. Nagovitsyn, Solar Activity, Cyclicity, and Prediction Methods (VVM, St. Petersburg, 2017) [in Russian].

    Google Scholar 

  21. T. Rotter, A. M. Veronig, M. Temmer, and B. Vrsnak, Solar Phys. 281, 793 (2012).

    Article  ADS  Google Scholar 

  22. J. Saqri, A. M. Veronig, S. G. Heinemann, S. J. Hofmeister, M. Temmer, K. Dissauer, and Y. Su, Solar Phys. 295, 6 (2020).

    Article  ADS  Google Scholar 

  23. R. N. Shelke and M. C. Pande, Bull. Astron. Soc. India 12, 404 (1984).

    ADS  Google Scholar 

  24. Yu. S. Shugai, I. S. Veselovsky, and L. D. Trichtchenko, Geomagn. Aeron. 49, 415 (2009).

    Article  ADS  Google Scholar 

  25. Y.-M. Wang, Astrophys. J. 715, L121 (2010)

    Article  ADS  Google Scholar 

  26. Y.-M. Wang and N. R. Sheeley, Astrophys. J. 355, 726 (1990).

    Article  ADS  Google Scholar 

  27. Yu. I. Yermolaev, I. G. Lodkina, N. S. Nikolaeva, M. Yu. Yermolaev, M. O. Riazantseva, and L. S. Rakhmanova, J. Atmos. Sol.-Terr. Phys. 180, 52 (2018).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to the referees for their careful reading of the paper and their useful remarks, which contributed significantly to its improvement. This work was supported in part by the Russian Foundation for Basic Research (project no. 20-52-26006) and the Ministry of Education and Science (NIR no. 0831-2019-0006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. S. Akhtemov.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhtemov, Z.S., Tsap, Y.T. On the Relationship between the Magnetic Field of a Low-Latitude Coronal Hole and Its Area. Astron. Lett. 47, 117–122 (2021). https://doi.org/10.1134/S1063773721010011

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773721010011

Keywords:

Navigation