Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Achieving sustainable nanomaterial design though strategic cultivation of big data

Standardization and interoperability of data for both the functional and environmental performance properties of nanomaterials is essential to accelerate sustainable design.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Disparities between material and chemical innovation and EHS research reflected by the number of publication records.

References

  1. Towards a European Strategy for Nanotechnology (European Commission, 2004).

  2. Dowling, A. et al. London R. Soc. R. Acad. Eng. Rep. 46, 618–618 (2004).

    Google Scholar 

  3. Grassian, V. H. Environ. Sci. Nano 1, 8–10 (2014).

    Article  CAS  Google Scholar 

  4. Dee, N. T. In Situ Monitoring and Control of Carbon Nanotube Synthesis (Massachusetts Institute of Technology, 2020).

  5. Kalinin, S. V. et al. ACS Nano 10, 9068–9086 (2016).

    Article  CAS  Google Scholar 

  6. Yan, X., Sedykh, A., Wang, W., Yan, B. & Zhu, H. Nat. Commun. 11, (2020).

  7. Paunovska, K., Loughrey, D., Sago, C. D., Langer, R. & Dahlman, J. E. Adv. Mater. 31, 1902798 (2019).

  8. Kim, E. et al. Chem. Mater. 29, 9436–9444 (2017).

    Article  CAS  Google Scholar 

  9. Shi, W., Xue, K., Meshot, E. R. & Plata, D. L. Green Chem. 19, 3787–3800 (2017).

    Article  CAS  Google Scholar 

  10. Wilkinson, M. D. et al. Sci. Data 3, 160018 (2016).

  11. Haase, A. EU US Roadmap Nanoinformatics 2030 (EU NanoSafety Cluster, 2017); https://doi.org/10.5281/zenodo.1486012

  12. Chetwynd, A. J., Wheeler, K. E. & Lynch, I. Nano Today 28, 100758 (2019).

    Article  CAS  Google Scholar 

  13. Gilbertson, L. M., Zimmerman, J. B., Plata, D. L., Hutchison, J. E. & Anastas, P. T. Chem. Soc. Rev. 44, 5758–5777 (2015).

    Article  CAS  Google Scholar 

  14. Meshot, E. R. et al. ACS Nano 3, 2477–2486 (2009).

    Article  CAS  Google Scholar 

  15. Plata, D. L., Hart, A. J., Reddy, C. M. & Gschwend, P. M. Environ. Sci. Technol. 43, 8367–8373 (2009).

    Article  CAS  Google Scholar 

  16. Plata, D. L., Meshot, E. R., Reddy, C. M., Hart, A. J. & Gschwend, P. M. ACS Nano 4, 7185–7192 (2010).

    Article  CAS  Google Scholar 

  17. Falinski, M. M. et al. Nat. Nanotechnol. 13, 708–714 (2018).

    Article  CAS  Google Scholar 

  18. Nat. Nanotechnol. 15, 83 (2020).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Desirée L. Plata.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plata, D.L., Janković, N.Z. Achieving sustainable nanomaterial design though strategic cultivation of big data. Nat. Nanotechnol. 16, 612–614 (2021). https://doi.org/10.1038/s41565-021-00902-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-021-00902-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing