Skip to main content
Log in

Fermented Duckweed as a Potential Feed Additive with Poultry Beneficial Bacilli Probiotics

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

In this study, the duckweed varieties Lemna minor, Spirodela polyrhiza, and a commercially processed duckweed food supplement were investigated as potential substrates for the propagation of two probiotic Bacillus strains, B. subtilis KATMIRA1933 and B. amyloliquefaciens B-1895. Both L. minor and S. polyrhiza were found to be suitable substrates for the propagation of both bacilli, with 8.47–9.48 Log CFU/g and 10.17–11.31 Log CFU/g after 24 and 48 h growth on the substrates, respectively. The commercial duckweed product was a less favorable substrate, with growth reaching a maximum of 7.89–8.91 CFU/g after 24 h with no further growth after 48 h. Growth and adherence of the bacilli to the three products were confirmed via electron microscopy. These strains have demonstrated health-promoting benefits for poultry and thereby have the potential to enhance duckweed as an animal feed through the process of fermentation. Duckweed has been shown to be a promising alternative resource for protein and has the opportunity to become a valuable resource in multiple industries as a potential means to increase sustainability, food security, and reduce environmental impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  1. Witte W (1998) Medical consequences of antibiotic use in agriculture. Science 279(5353):996–997. https://doi.org/10.1126/science.279.5353.996

    Article  CAS  PubMed  Google Scholar 

  2. Gerber PJ, Steinfeld H, Henderson B, Mottet A et al (2013) Tackling climate change through livestock: a global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO). http://www.fao.org/3/i3437e/i3437e.pdf. Accessed 03 Nov 2020

  3. Mingmongkolchai S, Panbangred W (2018) Bacillus probiotics: an alternative to antibiotics for livestock production. J Appl Microbiol 124(6):1334–1346. https://doi.org/10.1111/jam.13690

    Article  CAS  PubMed  Google Scholar 

  4. Ilinskaya ON, Ulyanova VV, Yarullina DR, Gataullin IG (2017) Secretome of intestinal bacilli: a natural guard against pathologies. Front Microbiol 8:1666. https://doi.org/10.3389/fmicb.2017.01666

    Article  PubMed  PubMed Central  Google Scholar 

  5. Raddadi N, Crotti E, Rolli E, Marasco R, Fava F, Daffonchio D (2012) The most important Bacillus species in biotechnology. In: Sansinenea E (ed) Bacillus thuringiensis Biotechnology. Springer, Dordrecht, Netherlands, pp 329–345

    Chapter  Google Scholar 

  6. Lyngwi N, Joshi SR (2014) Economically important Bacillus and related genera: a mini review. In: Sen, A. (Ed.) Biology of useful plants and microbes. Narosa Publishing House, New Delhi, India

  7. Sutyak KE, Wirawan RE, Aroutcheva AA, Chikindas ML (2008) Isolation of the Bacillus subtilis antimicrobial peptide subtilosin from the dairy product-derived Bacillus amyloliquefaciens. J Appl Microbiol 104:1067–1074. https://doi.org/10.1111/j.1365-2672.2007.03626.x

    Article  CAS  PubMed  Google Scholar 

  8. Karlyshev AV, Melnikov VG, Chikindas ML (2014) Draft genome sequence of Bacillus subtilis strain KATMIRA1933. Genome Announc 2(3):e00619-e714. https://doi.org/10.1128/genomeA.00619-14

    Article  PubMed  PubMed Central  Google Scholar 

  9. Algburi A, Volski A, Cugini C, Walsh EM, Chistyakov V et al (2016) Safety properties and probiotic potential of Bacillus subtilis KATMIRA1933 and Bacillus amyloliquefaciens B-1895. Adv Microbiol 6(6):432–452. https://doi.org/10.4236/aim.2016.66043

    Article  CAS  Google Scholar 

  10. Karlyshev AV, Melnikov VG, Chistyakov VA (2014) Draft genome sequence of Bacillus amyloliquefaciens B-1895. Genome Announc 2(3):e00633-e714. https://doi.org/10.1128/genomeA.00633-14

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chistyakov V, Melnikov V, Chikindas ML, Khutsishvili M et al (2014) Poultry-beneficial solid-state Bacillus amyloliquefaciens B-1895 fermented soybean formulation. Biosci Microbiota Food Health 34(1):25–28. https://doi.org/10.12938/bmfh.2014-012

  12. Prazdnova E, Chistyakov V, Churilov M, Mazanko M et al (2015) DNA-protection and antioxidant properties of fermentates from Bacillus amyloliquefaciens B-1895 and Bacillus subtilis KATMIRA1933. Lett Appl Microbiol 61:549–554. https://doi.org/10.1111/lam.12491

    Article  CAS  PubMed  Google Scholar 

  13. Mazanko MS, Gorlov IF, Prazdnova EV, Makarenko MS et al (2018) Bacillus probiotic supplementations improve laying performance, egg quality, hatching of laying hens, and sperm quality of roosters. Probiotics Antimicrob Proteins 10(2):367–373. https://doi.org/10.1007/s12602-017-9369-4

    Article  CAS  PubMed  Google Scholar 

  14. Amrouche T, Sutyak NK, Wang Y, Huang Q, Chikindas ML (2010) Antibacterial activity of subtilosin alone and combined with curcumin, poly-lysine and zinc lactate against Listeria monocytogenes strains. Probiotics Antimicrob Proteins 2:250–257. https://doi.org/10.1007/s12602-010-9042-7

    Article  CAS  PubMed  Google Scholar 

  15. Algburi A, Zehm S, Netrebov V, Bren AB et al (2017) Subtilosin prevents biofilm formation by inhibiting bacterial quorum sensing. Probiotics Antimicrob Proteins 9:81–90. https://doi.org/10.1007/s12602-016-9242-x

    Article  CAS  PubMed  Google Scholar 

  16. Algburi A, Al-Hasani HM, Ismael TK, Abdelhameed A, Weeks R, Ermakov AM, Chikindas ML (2021) Antimicrobial activity of Bacillus subtilis KATMIRA1933 and Bacillus amyloliquefaciens B-1895 against Staphylococcus aureus biofilms isolated from wound infection. Probiotics and antimicrob proteins 13:125–134. https://doi.org/10.1007/s12602-020-09673-4

  17. Appenroth K, Sree KS, Fakhoorian T, Fakhoorian T, Lam E (2015) Resurgence of duckweed research and applications: report from the 3rd International Duckweed Conference. Plant Mol Biol 89:647–654. https://doi.org/10.1007/s11103-015-0396-9

    Article  CAS  PubMed  Google Scholar 

  18. Sońta M, Rekiel A, Batorska M (2019) Use of duckweed (Lemna L.) in sustainable livestock production and aquaculture—a review. Ann Anim Sci 19(2):257–271. https://doi.org/10.2478/aoas-2018-0048

  19. Appenroth KJ, Sree KS, Böhm V, Hammann S et al (2017) Nutritional value of duckweeds (Lemnaceae) as human food. Food Chem 217:266–273. https://doi.org/10.1016/j.foodchem.2016.08.116

    Article  CAS  PubMed  Google Scholar 

  20. Appenroth KJ, Sree KS, Bog M, Ecker J et al (2018) Nutritional value of the duckweed species of the genus Wolffia (Lemnaceae) as human food. Front Chem 6:483. https://doi.org/10.3389/fchem.2018.00483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sree KS, Dahse HM, Chandran JN, Schneider B et al (2019) Duckweed for human nutrition: no cytotoxic and no anti-proliferative effects on human cell lines. Plant Food Hum Nutr 74(2):223–224. https://doi.org/10.1007/s11130-019-00725-x

    Article  CAS  Google Scholar 

  22. Anderson KE, Lowman Z, Stomp AM, Chang J (2011) Duckweed as a feed ingredient in laying hen diets and its effect on egg production and composition. Int J Poult Sci 10(1):4–7. https://doi.org/10.3923/ijps.2011.4.7

    Article  CAS  Google Scholar 

  23. Talukdar MZH, Shahjahan M, Rahman MS (2012) Suitability of duckweed (Lemna minor) as feed for fish in polyculture system. Int J Agric Res Innov Technol 2(1):42–46. https://doi.org/10.3329/ijarit.v2i1.13994

    Article  Google Scholar 

  24. Moyo S, Dalu JM, Ndamba J (2003) The microbiological safety of duckweed fed chickens: a risk assessment of using duckweed reared on domestic wastewater as a protein source in broiler chickens. Phys Chem Earth, Parts 28(20–27):1125–1129. https://doi.org/10.1016/j.pce.2003.08.021

    Article  Google Scholar 

  25. Pandey A (1992) Recent process developments in solid-state fermentation. Process Biochem 27(2):109–117. https://doi.org/10.1016/0032-9592(92)80017-W

    Article  CAS  Google Scholar 

  26. Rodríguez-Couto S, Sanromán MÁ (2006) Application of solid-state fermentation to food industry—a review. J Food Eng 73(3):291–302. https://doi.org/10.1016/j.jfoodeng.2005.05.022

    Article  CAS  Google Scholar 

  27. Bairagi A, Ghosh KS, Sen SK, Ray AK (2002) Duckweed (Lemna polyrhiza) leaf meal as a source of feedstuff in formulated diets for rohu (Labeo rohita Ham.) fingerlings after fermentation with a fish intestinal bacterium. Bioresour Technol 85(1):17–24. https://doi.org/10.1016/S0960-8524(02)00067-6

  28. Andriani Y, Zidni I (2019) Quality improvement of biomaterial of Lemna sp. Mater Sci Forum 966:139–144 https://doi.org/10.4028/www.scientific.net/MSF.966.139

  29. Setiyatwan H, Harlia E, Rusmana D, Benito T, Adriani L (2018) Effect of fermentation using Trichoderma harzianum and Saccharomyces cerevisiae on crude protein, crude fibre and zinc content of duckweed. Int J Poult Sci 17:605–609. https://doi.org/10.3923/ijps.2018.605.609

    Article  CAS  Google Scholar 

  30. Mahoney R, Weeks R, Zheng T, Huang Q, Dai W et al (2020) Evaluation of an industrial soybean byproduct for the potential development of a probiotic animal feed additive with Bacillus species. Probiotics Antimicrob Proteins 12:1173–1178

    Article  CAS  Google Scholar 

  31. Mohamad Haafiz MK, Eichhorn SJ, Hassan A, Jawaid M (2013) Isolation and characterization of microcrystalline cellulose from oil palm biomass residue. Carbohydr Polym 93(2):628–634. https://doi.org/10.1016/j.carbpol.2013.01.035

    Article  CAS  PubMed  Google Scholar 

  32. Mwale M, Gwaze FR (2013) Characteristics of duckweed and its potential as feed source for chickens reared for meat production. Sci Res Essays 8(18):689–697. https://doi.org/10.5897/SREX12.003

    Article  Google Scholar 

  33. Van der Spiegel M, Noordam MY, Van der Fels-Klerx HJ (2013) Safety of novel protein sources (insects, microalgae, seaweed, duckweed, and rapeseed) and legislative aspects for their application in food and feed production. Compr Rev Food Sci 12(6):662–678. https://doi.org/10.1111/1541-4337.12032

    Article  CAS  Google Scholar 

  34. Almahy HA (2015) Antibacterial activity of methanol extracts of the leaves of Lemna minor against eight different bacterial species. Int J Pharm 5(1):46–50

    Google Scholar 

  35. Mane VS, Gupta A, Pendharkar N, Shinde B (2017) Exploration of primary metabolites from Lemna minor and determined its immunomodulatory and antimicrobial activity. Eur J Pharm Med Res 4(4):384–388. https://storage.googleapis.com/journal-uploads/ejpmr/article_issue/1490959911.pdf. Accessed 03 Nov 2020

  36. Tan LP, Hamdan RH, Mohamed M, Choong SS et al (2018) Antibacterial activity and toxicity of duckweed, Lemna minor L. (Arales: Lemnaceae) from Malaysia. Malays J Microbiol 14(5):387–392. https://doi.org/10.21161/mjm.114417

  37. Velichkova K, Sirakov I, Denev S (2019) In vitro antibacterial effect of Lemna minuta, Chlorella vulgaris and Spirulina sp. extracts against fish pathogen Aeromonas hydrophila. AACL Bioflux 12(3):936–940 https://bioflux.com.ro/docs/2019.936-940.pdf. Accessed 03 Nov 2020

  38. Fan B, Borriss R, Bleiss W, Wu X (2012) Gram-positive rhizobacterium Bacillus amyloliquefaciens FZB42 colonizes three types of plants in different patterns. J Microbiol 50(1):38–44. https://doi.org/10.1007/s12275-012-1439-4

    Article  PubMed  Google Scholar 

  39. Ayuni YA, Wiryawan KG (2019) The effects of graded levels of fermented duckweed in quail diets on egg production and yolk cholesterol. In: IOP Conference Series: Earth and Environmental Science 387(1):012112. IOP Publishing. https://doi.org/10.1088/1755-1315/387/1/012112

  40. Flores-Miranda MDC, Luna-González A, Cortés-Espinosa DV, Cortés-Jacinto E, Fierro-Coronado JA et al (2014) Bacterial fermentation of Lemna sp. as a potential substitute of fish meal in shrimp diets. Afr J Microbiol Res 8(14):1516–1526. https://doi.org/10.5897/AJMR2014.6654

  41. del Carmen Flores-Miranda M, Luna-González A, Cortés-Espinosa DV, Álvarez-Ruiz P, Cortés-Jacinto E et al (2015) Effects of diets with fermented duckweed (Lemna sp.) on growth performance and gene expression in the Pacific white shrimp, Litopenaeus vannamei. Aquac Int 23(2):547–561. https://doi.org/10.1007/s10499-014-9835-x

  42. Andriani Y, Harahap SA, Rochima E, Iskandar I, Zidni I et al (2019) Effect of feeding fermented Lemna sp on growth in fish that have different habit foods. GSJ 7(2):106–110. http://www.globalscientificjournal.com/researchpaper/EFFECT_OF_FEEDING_FERMENTED_LEMNA_SP_ON_GROWTH_IN_FISH_THAT_HAVE_DIFFERENT_HABIT_FOODS.pdf. Accessed 03 Nov 2020

  43. Iskandar I, Andriani Y, Rostika R, Zidni I, Riyanti NA (2019) Effect of using fermented Lemna sp in fish feed on growth rate of Nilem Carp (Osteochilus hasselti). World News Nat Sciences 26:157–166. http://www.worldnewsnaturalsciences.com/wp-content/uploads/2019/07/WNOFNS-26-2019-157-166-1.pdf. Accessed 03 Nov 2020

  44. Golovko GV, Zipelt LI, Karpenko GI, Chistyakov VA, Sazykina MA et al (2008) Method for growth of young Azov-Chernomorskaya royal fish in ponds. RU Patent 2376755. https://patents.google.com/patent/RU2376755C1/en

  45. Mohedano RA, Costa RH, Tavares FA, Belli Filho P (2012) High nutrient removal rate from swine wastes and protein biomass production by full-scale duckweed ponds. Bioresour Technol 112:98–104. https://doi.org/10.1016/j.biortech.2012.02.083

    Article  CAS  PubMed  Google Scholar 

  46. Zakaria HA, Shammout MW (2018) Duckweed in irrigation water as a replacement of soybean meal in the laying hens’ diet. Braz J Poultry Sci 20(3):573–582. https://doi.org/10.1590/1806-9061-2018-0737

    Article  Google Scholar 

  47. Landesman L, Fedler C, Duan R (2010) Plant nutrient phytoremediation using duckweed. In: Ansari A, Singh Gill S, Lanza G, Rast W (eds) Eutrophication: causes, consequences and control. 341–354. Springer, Dordrecht, Netherlands. https://doi.org/10.1007/978-90-481-9625-8_17

  48. Rahman MA, Hasegawa H, Ueda K, Maki T, Okumura C et al (2007) Arsenic accumulation in duckweed (Spirodela polyrhiza L.): a good option for phytoremediation. Chemosphere 69(3):493–499. https://doi.org/10.1016/j.chemosphere.2007.04.019

  49. Radić S, Stipaničev D, Cvjetko P et al (2010) Ecotoxicological assessment of industrial effluent using duckweed (Lemna minor L.) as a test organism. Ecotoxicology 19(1):216. https://doi.org/10.1007/s10646-009-0408-0

  50. Fujisawa T, Kurosawa M, Katagi T (2006) Uptake and transformation of pesticide metabolites by duckweed (Lemna gibba). J Agric Food Chem 54(17):6286–6293. https://doi.org/10.1021/jf061301g

    Article  CAS  PubMed  Google Scholar 

  51. Xu J, Cui W, Cheng JJ, Stomp AM (2011) Production of high-starch duckweed and its conversion to bioethanol. Biosyst Eng 110(2):67–72. https://doi.org/10.1016/j.biosystemseng.2011.06.007

    Article  Google Scholar 

  52. Cheng JJ, Stomp AM (2009) Growing duckweed to recover nutrients from wastewaters and for production of fuel ethanol and animal feed. Clean-Soil Air Water 37(1):17–26. https://doi.org/10.1002/clen.200800210

    Article  CAS  Google Scholar 

Download references

Funding

VAC, AME, DR, AB, IP, and MLC were supported by the Ministry of Science and Higher Education of the Russian Federation (Project Number 075-15-2019-1880).

Author information

Authors and Affiliations

Authors

Contributions

RM, VAC, AME, DR, and MLC conceived and designed the study; RM performed laboratory testing; WD, YC, GL, and YG prepared samples and conducted electron microscopy study; IP conducted the data statistical analysis and prepared figures; RM, RW, VAC, AME, DR, AB, and MLC analyzed the data and wrote the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Richard Weeks.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahoney, R., Weeks, R., Huang, Q. et al. Fermented Duckweed as a Potential Feed Additive with Poultry Beneficial Bacilli Probiotics. Probiotics & Antimicro. Prot. 13, 1425–1432 (2021). https://doi.org/10.1007/s12602-021-09794-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-021-09794-4

Keywords

Navigation