Skip to main content

Advertisement

Log in

In Vitro and In Vivo Cholesterol Reducing Ability and Safety of Probiotic Candidates Isolated from Korean Fermented Soya Beans

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Hypercholesterolemia is a risk factor for cardiovascular diseases, and hence, reducing serum cholesterol levels could reduce the incidence. In this study, we ascertained the cholesterol-reducing potential of lactic acid bacteria (LAB) isolated from Korean fermented soybean paste. Live, resting, and dead cells of all the bacteria reduced cholesterol in liquid media in a strain-dependent manner. Live cells of Weissella cibaria SCCB2306, Pediococcus acidilactici SDL1402, P. acidilactici SDL1406, and Lactobacillus rhamnosus JDFM6 reduced the most cholesterol in liquid media by 78 ± 3%, 72 ± 3%, 76 ± 3%, 75 ± 5%, and 79 ± 2%, respectively. As the cholesterol levels in the media reduced, cell membrane lipids of P. acidilactici SDL1402, P. acidilactici SDL1406, and L. rhamnosus JDFM6 increased by 23.36 mg/mL, 6.53 mg/mL, and 8.14 mg/mL, respectively, indicating that cholesterol was incorporated into the bacteria cell membranes. All the bacteria displayed bile salt hydrolase activities in a strain-dependent manner. Though all four LAB significantly reduced cholesterol levels in Caenorhabditis elegans irrespective of the order of feeding, L. rhamnosus JDFM6 reduced the most cholesterol in vivo (up to 40% of ingested cholesterol). None of the four LAB hydrolyzed mucin or gelatin and none was toxic to C. elegans. The concentrations of phenylethylamine, putrescine, cadaverine, histamine, and tyramine produced by the LAB were below the toxic limits of biogenic amines set by the European Food Safety Authority. Taken together, our results demonstrate that Weissella cibaria SCCB2306, P. acidilactici SDL1402, P. acidilactici SDL1405, and L. rhamnosus JDFM6 could be safe cholesterol-reducing probiotic candidates for preventing or managing hypercholesterolemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Chamberlain AM, Cohen SS, Weston SA, Fox KM, Xiang P, Killian JM et al (2019) Relation of cardiovascular events and deaths to low-density lipoprotein cholesterol level among statin-treated patients with atherosclerotic cardiovascular disease. Am J Cardiol 123(11):1739–1744. https://doi.org/10.1016/j.amjcard.2019.02.043

    Article  PubMed  PubMed Central  Google Scholar 

  2. Vrecer M, Turk S, Drinovec J, Mrhar A (2003) Use of statins in primary and secondary prevention of coronary heart disease and ischemic stroke. Meta-analysis of randomized trials. Int J Clin Pharmacol Ther 41(12):567–77. https://doi.org/10.5414/cpp41567

  3. Brugts J, Yetgin T, Hoeks S, Gotto A, Shepherd J, Westendorp R et al (2009) The benefits of statins in people without established cardiovascular disease but with cardiovascular risk factors: meta-analysis of randomised controlled trials. BMJ 338:b2376. https://doi.org/10.1136/bmj.b2376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Akyea RK, Kai J, Qureshi N, Iyen B, Weng SF (2019) Sub-optimal cholesterol response to initiation of statins and future risk of cardiovascular disease. Heart 105(13):975–981. https://doi.org/10.1136/heartjnl-2018-314253

    Article  CAS  PubMed  Google Scholar 

  5. Ray KK, Landmesser U, Leiter LA, Kallend D, Dufour R, Karakas M, et al (2017) Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol. N Engl J Med 376(15):1430–1440. 1056/NEJMoa1615758

  6. Sabatine MS, Giugliano RP, Keech AC, Honarpour N, Wiviott SD, Murphy SA et al (2017) Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med 376(18):1713–1722. https://doi.org/10.1056/NEJMoa1615664

    Article  CAS  PubMed  Google Scholar 

  7. Ghosh GC, Bandyopadhyay D, Ghosh RK, Mondal S, Herzog E (2018) Effectiveness and safety of inclisiran, a novel long-acting RNA therapeutic inhibitor of proprotein convertase subtilisin/kexin 9. Am J Cardiol 122(7):1272–1277. https://doi.org/10.1016/j.amjcard.2018.06.023

    Article  CAS  PubMed  Google Scholar 

  8. Jones ML, Martoni CJ, Parent M, Prakash S (2012) Cholesterol-lowering efficacy of a microencapsulated bile salt hydrolase-active Lactobacillus reuteri NCIMB 30242 yoghurt formulation in hypercholesterolaemic adults. Br J Nutr 107(10):1505–1513. https://doi.org/10.1017/S0007114511004703

    Article  CAS  PubMed  Google Scholar 

  9. Jones M, Martoni C, Prakash S (2012) Cholesterol lowering and inhibition of sterol absorption by Lactobacillus reuteri NCIMB 30242: a randomized controlled trial. Eur J Clin Nutr 66(11):1234–1241. https://doi.org/10.1038/ejcn.2012.126

    Article  CAS  PubMed  Google Scholar 

  10. Ishimwe N, Daliri EB, Lee BH, Fang F, Du G (2015) The perspective on cholesterol-lowering mechanisms of probiotics. Mol Nutr Food Res 59(1):94–105. https://doi.org/10.1002/mnfr.201400548

    Article  CAS  PubMed  Google Scholar 

  11. Liong MT, Lee BH, Choi SB, Lew LC, Lau ASY, Daliri EBM (2015) Cholesterol-lowering effects of probiotics and prebiotics. K. Venema, P.A. Carmo (Eds.), Probiotics and prebiotics, pp. 429–447. https://doi.org/10.21775/9781910190098.29

  12. Dehkohneh A, Jafari P, Fahimi H (2019) Effects of probiotic Lactobacillus paracasei TD3 on moderation of cholesterol biosynthesis pathway in rats. Iran J Basic Med Sci 22(9):1004. https://doi.org/10.22038/ijbms.2019.33933.8073

  13. Ding W, Shi C, Chen M, Zhou J, Long R, Guo X (2017) Screening for lactic acid bacteria in traditional fermented Tibetan yak milk and evaluating their probiotic and cholesterol-lowering potentials in rats fed a high-cholesterol diet. J Funct Foods 32:324–332. https://doi.org/10.1016/j.jff.2017.03.021

    Article  CAS  Google Scholar 

  14. Qu T, Yang L, Wang Y, Jiang B, Shen M, Ren D (2020) Reduction of serum cholesterol and its mechanism by Lactobacillus plantarum H6 screened from local fermented food products. Food Funct 11(2):1397–1409. https://doi.org/10.1039/C9FO02478F

    Article  CAS  PubMed  Google Scholar 

  15. Anderson JW, Gilliland SE (1999) Effect of fermented milk (yogurt) containing Lactobacillus acidophilus L1 on serum cholesterol in hypercholesterolemic humans. J Am Coll Nutr 18(1):43–50. https://doi.org/10.1080/07315724.1999.10718826

    Article  CAS  PubMed  Google Scholar 

  16. Chiu CH, Lu TY, Tseng YY, Pan TM (2006) The effects of Lactobacillus-fermented milk on lipid metabolism in hamsters fed on high-cholesterol diet. Appl Microbiol Biotechnol 71(2):238–245. https://doi.org/10.1007/s00253-005-0145-0

    Article  CAS  PubMed  Google Scholar 

  17. Rezazadeh L, Alipour B, Jafarabadi MA, Gargari BP (2020) Evaluation of the effects of probiotic yoghurt on inflammation and cardiometabolic risk factors in subjects with metabolic syndrome: a randomised controlled trial. Int Dairy J 101:104577. https://doi.org/10.1016/j.idairyj.2019.104577

    Article  CAS  Google Scholar 

  18. Daliri EBM, Lee BH, Oh DH (2019) Safety of probiotics in health and disease. In: Singh RB, Watson RR, Takahashi T (Eds) The role of functional food security in global health. Academic Press, pp 603–622. https://doi.org/10.1016/B978-0-12-813148-0.00034-7

  19. Oh A, Daliri EBM, Oh DH (2018) Screening for potential probiotic bacteria from Korean fermented soybean paste: in vitro and Caenorhabditis elegans model testing. LWT - Food Sci Technol 88:132–138. https://doi.org/10.1016/j.lwt.2017.10.007

    Article  CAS  Google Scholar 

  20. Choi EA, Chang HC (2015) Cholesterol-lowering effects of a putative probiotic strain Lactobacillus plantarum EM isolated from kimchi. LWT - Food Sci Technol 62(1):210–217. https://doi.org/10.3390/ijms20092073

    Article  CAS  Google Scholar 

  21. Dashkevicz MP, Feighner SD (1989) Development of a differential medium for bile salt hydrolase-active Lactobacillus spp. Appl Environ Microbiol 55(1):11–16 (PMID: 2705765)

    Article  CAS  Google Scholar 

  22. Liong M, Shah N (2005) Acid and bile tolerance and cholesterol removal ability of lactobacilli strains. J Dairy Sci 88(1):55–66. https://doi.org/10.3168/jds.S0022-0302(05)72662-X

    Article  CAS  PubMed  Google Scholar 

  23. Lee HJ, Zhang W, Zhang D, Yang Y, Liu B, Barker EL et al (2015) Assessing cholesterol storage in live cells and C. elegans by stimulated Raman scattering imaging of phenyl-diyne cholesterol. Sci Rep 5:7930. https://doi.org/10.1038/srep07930

  24. Niu SL, Litman BJ (2002) Determination of membrane cholesterol partition coefficient using a lipid vesicle–cyclodextrin binary system: effect of phospholipid acyl chain unsaturation and headgroup composition. Biophys J 83(6):3408–3415. https://doi.org/10.1016/S0006-3495(02)75340-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kim MJ, Ku S, Kim SY, Lee HH, Jin H, Kang S et al (2018) Safety evaluations of Bifidobacterium bifidum BGN4 and Bifidobacterium longum BORI. Int J Mol Sci 19(5):1422. https://doi.org/10.3390/ijms19051422

    Article  CAS  PubMed Central  Google Scholar 

  26. Baccouri O, Boukerb AM, Farhat LB, Zébré A, Zimmermann K, Domann E, Cambronel M, Barreau M, Maillot O, Rincé I, Muller C (2019) Probiotic potential and safety evaluation of Enterococcus faecalis OB14 and OB15, isolated from traditional Tunisian testouri cheese and rigouta, using physiological and genomic analysis. Front Microbiol 10:881–896. https://doi.org/10.3389/fmicb.2019.00881

    Article  PubMed  PubMed Central  Google Scholar 

  27. Majeed M, Majeed S, Nagabhushanam K, Arumugam S, Beede K, Ali F (2019) Evaluation of the in vitro cholesterol-lowering activity of the probiotic strain Bacillus coagulans MTCC 5856. Int J Food Sci 54(1):212–220. https://doi.org/10.1111/ijfs.13926

    Article  CAS  Google Scholar 

  28. Shehata MG, El-Sahn MA, El Sohaimy SA, Youssef MM (2019) In vitro assessment of hypocholesterolemic activity of Lactococcus lactis subsp. lactis. Bull Natl Res Cent 43(1):60. https://doi.org/10.1186/s42269-019-0090-1

  29. Sasikumar K, Vaikkath DK, Devendra L, Nampoothiri KM (2017) An exopolysaccharide (EPS) from a Lactobacillus plantarum BR2 with potential benefits for making functional foods. Bioresour Technol 241:1152–1156. https://doi.org/10.1016/j.biortech.2017.05.075

    Article  CAS  PubMed  Google Scholar 

  30. Venema K, Meijerink M (2015) Lactobacilli as probiotics: discovering new functional aspects and target sites. In Venema K, do Carmo AP (Eds) Probiotics and prebiotics: Current research and future trends, Caister Academic Press, Haverhill, United Kingdom, pp 29 – 42. https://doi.org/10.21775/9781910190098

  31. Lee J, Kim Y, Yun HS, Kim JG, Oh S, Kim SH (2010) Genetic and proteomic analysis of factors affecting serum cholesterol reduction by Lactobacillus acidophilus A4. Appl Environ Microbiol 76(14):4829–4835. https://doi.org/10.1128/AEM.02892-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Araya M, Morelli L, Reid G, Sanders M, Stanton C, Pineiro M, et al (2002) Guidelines for the evaluation of probiotics in food. Report of a Joint FAO/WHO working group on drafting guidelines for the evaluation of probiotics in food, London, Ontario, Canada. https://www.who.int/foodsafety/fs_management/en/probiotic_guidelines.pdf

  33. Michael D, Davies T, Moss J, Calvente DL, Ramji D, Marchesi JR et al (2017) The anti-cholesterolaemic effect of a consortium of probiotics: an acute study in C57BL/6J mice. Sci Rep 7(1):1–10. https://doi.org/10.1038/s41598-017-02889-5

    Article  CAS  Google Scholar 

  34. Bhat B, Habib B, Bhagat N, Bajaj BK (2019) Cholesterol lowering and antioxidant potential of probiotic bacteria isolated from locally fermented milk product kalarei. Indian J Biochem Biophys 56:363–372

    CAS  Google Scholar 

  35. Thumu SCR, Halami PM (2019) In vivo safety assessment of Lactobacillus fermentum strains, evaluation of their cholesterol lowering ability and intestinal microbial modulation. J Sci Food Agric 100(2):705–713. https://doi.org/10.1155/2020/8601796

    Article  CAS  PubMed  Google Scholar 

  36. Neu AK, Månsson M, Gram L, Prol-García MJ (2014) Toxicity of bioactive and probiotic marine bacteria and their secondary metabolites in Artemia sp. and Caenorhabditis elegans as eukaryotic model organisms. Appl Environ Microbiol 80:146–153. https://doi.org/10.1128/AEM.02717-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ruas-Madiedo P, Gueimonde M, Fernández-García M, Clara G, Margolles A (2008) Mucin degradation by Bifidobacterium strains isolated from the human intestinal microbiota. Appl Environ Microbiol 74:1936–1940. https://doi.org/10.1128/AEM.02509-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zeng J, Teng F, Murray B (2005) Gelatinase is important for translocation of Enterococcus faecalis across polarized human enterocyte-like T84 cells. Infect Immun 73(3):1606–1612. https://doi.org/10.1128/IAI.73.3.1606-1612.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Thurlow LR, Thomas VC, Narayanan S, Olson S, Fleming SD, Hancock LE (2010) Gelatinase contributes to the pathogenesis of endocarditis caused by Enterococcus faecalis. Infect Immun 78(11):4936–4943. https://doi.org/10.1128/IAI.01118-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ruiz-Capillas C, Herrero AM (2019) Impact of biogenic amines on food quality and safety. Foods 8(2):62. https://doi.org/10.3390/foods8020062

    Article  CAS  PubMed Central  Google Scholar 

  41. Burdychova R, Komprda T (2007) Biogenic amine-forming microbial communities in cheese. FEMS Microbiol Lett 276(2):149–155. https://doi.org/10.1111/j.1574-6968.2007.00922.x

    Article  CAS  PubMed  Google Scholar 

  42. Lorencová E, Buňková L, Matoulková D, Dráb V, Pleva P, Kubáň V et al (2012) Production of biogenic amines by lactic acid bacteria and bifidobacteria isolated from dairy products and beer. Int J Food Sci 47(10):2086–2091. https://doi.org/10.1111/j.1365-2621.2012.03074.x

    Article  CAS  Google Scholar 

  43. Spano G, Russo P, Lonvaud-Funel A, Lucas P, Alexandre H, Grandvalet C et al (2010) Biogenic amines in fermented foods. Eur J Clin Nutr 64(3):S95–S100. https://doi.org/10.1038/ejcn.2010.218

    Article  CAS  PubMed  Google Scholar 

  44. Soufleros E, Barrios ML, Bertrand A (1998) Correlation between the content of biogenic amines and other wine compounds. Am J Enol Vitic 49(3):266–2678

    CAS  Google Scholar 

  45. Hazards EPoB, (2011) Scientific opinion on risk based control of biogenic amine formation in fermented foods. EFSA J9(10):2393. https://doi.org/10.2903/j.efsa.2011.2393

    Article  CAS  Google Scholar 

  46. del RB, Redruello B, Linares DM, Ladero V, Ruas-Madiedo P, Fernandez M, et al (2019) The biogenic amines putrescine and cadaverine show in vitro cytotoxicity at concentrations that can be found in foods. Sci Rep 9(1):1–7. https://doi.org/10.1038/s41598-018-36239-w

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

E.B.D, Y.K., and Y.D. contributed equally in performing the experiments; E.B.D. wrote the original draft preparation; R.C. technically supported the study; and D.H.O supervised and managed the study.

Corresponding author

Correspondence to Deog-Hwan Oh.

Ethics declarations

Conflict of Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daliri, E.BM., Kim, Y., Do, Y. et al. In Vitro and In Vivo Cholesterol Reducing Ability and Safety of Probiotic Candidates Isolated from Korean Fermented Soya Beans. Probiotics & Antimicro. Prot. 14, 87–98 (2022). https://doi.org/10.1007/s12602-021-09798-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-021-09798-0

Keywords

Navigation