Skip to main content
Log in

Bubble behavior in cylindrical and square vessels under centric mechanical stirring

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Water model experiments were carried out to investigate the bubble behavior in cylindrical and square vessels under centric mechanical stirring. The bubble behavior in the square vessel was investigated in detail by using a high-speed camera to record the transient images of the bubbles. An image analysis software was used to obtain the bubble diameter. The results showed that the centric mechanical stirring in the square vessel was suitable for breakage and dispersion of bubbles, but not suitable for that in the cylindrical vessel. Increasing the impeller blade length and impeller rotation speed was beneficial to disintegrate and disperse bubbles widely. The bubble diameter decreased with the increase in the Weber number and increased slightly with the increase in the modified Froude number. The dimensionless correlation equation of bubble diameter was obtained by the dimensional analysis method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T. Vuolio, V.V. Visuri, S. Tuomikoski, T. Paananen, T. Fabritius, Metall. Mater. Trans. B 49 (2018) 2692–2708.

    Article  Google Scholar 

  2. X. Wang, S.G. Zheng, M.Y. Zhu, Ironmak. Steelmak. 47 (2020) 915–924.

    Article  Google Scholar 

  3. W.J. Ma, H.B. Li, Y. Cui, B. Chen, G.L. Liu, J.L. Ji, ISIJ Int. 57 (2017) 214–219.

    Article  Google Scholar 

  4. Y. Nakaguchi, T. Nakajima, Y. Sakai, Y. Ueda, M. Iguchi, ISIJ Int. 55 (2015) 326–328.

    Article  Google Scholar 

  5. S. Yamaguchi, T. Uemura, H. Nashiwa, H. Sugita, Ironmak. Steelmak. 4 (1977) 276–279.

    Google Scholar 

  6. G.A. Irons, C. Celik, Ironmak. Steelmak. 19 (1992) 136–144.

    Google Scholar 

  7. V. Seshadri, C.A.D. Silva, I.A.D. Silva, P.V. Kruger, ISIJ Int. 37 (1997) 21–30.

    Article  Google Scholar 

  8. H.J. Visser, R. Boom, ISIJ Int. 46 (2006) 1771–1777.

    Article  Google Scholar 

  9. J. Yang, M. Kuwabara, K. Okumura, M. Sano, ISIJ Int. 45 (2005) 1795–1803.

    Article  Google Scholar 

  10. W. Wu, W. Wu, Y.B. Hu, L. Liu, Y.L. Ding, J. Iron Steel Res. Int. 15 (2008) No. 1, 15–18.

    Article  Google Scholar 

  11. K.F. Feng, A. Liu, K.J. Dai, S. Feng, J. Ma, J.Y. Xie, B. Wang, Y.W. Yu, J.Y. Zhang, Powder Technol. 314 (2017) 649–659.

    Article  Google Scholar 

  12. E. Scheepers, J.J. Eksteen, C. Aldrich, Miner. Eng. 19 (2006) 1163–1173.

    Article  Google Scholar 

  13. Y. Liu, Z.M. Zhang, M. Sano, J. Zhang, P. Shao, T.A. Zhang, J. Iron Steel Res. Int. 21 (2014) 135–143.

    Article  Google Scholar 

  14. J.H. Ji, R.Q. Liang, J.C. He, ISIJ Int. 57 (2017) 453–462.

    Article  Google Scholar 

  15. L.W. Xiao, K.S. Chen, B.B. Dan, Z.J. Rong, R. Wang, Adv. Mech. Eng. 8 (2016) No. 7, 1–11.

    Article  Google Scholar 

  16. R.Q. Liang, J.H. Ji, J.C. He, J. Iron Steel Res. Int. 18 (2011) No. S2, 107–112.

    Google Scholar 

  17. Y. Liu, Z.M. Zhang, J.N. Liu, J.H. Zhang, M. Sano, J. Zhang, J. Iron Steel Res. Int. 20 (2013) 1–6.

    Google Scholar 

  18. Y. Liu, M. Sano, T.A. Zhang, Q. Wang, J.C. He, ISIJ Int. 49 (2009) 17–23.

    Article  Google Scholar 

  19. Y. Liu, T.A. Zhang, M. Sano, Q. Wang, X.D. Ren, J.C. He, Trans. Nonferrous Metal. Soc. China. 21 (2011) 1896–1904.

    Article  Google Scholar 

  20. Y. Liu, T.A. Zhang, M. Sano, Q. Wang, J.C. He, J. Iron Steel Res. Int. 18 (2011) No. S2, 166–171.

    Google Scholar 

  21. P.H. Calderbank, Trans. Inst. Chem. Engrs. 16 (1958) 443–453.

    Google Scholar 

  22. D.X. Wang, Y. Liu, Z.M. Zhang, P. Shao, T.A. Zhang, Math. Probl. Eng. 2016 (2016) 4170371.

    Google Scholar 

  23. J. Yang, M. Kuwabara, K. Okumura, M. Sano, Tetsu-to-Hagane 92 (2006) 246–253.

    Article  Google Scholar 

  24. K. Okumura, M. Ban, M. Hirasawa, M. Sano, K. Mori, ISIJ Int. 35 (1995) 832–837.

    Article  Google Scholar 

  25. T. Vermeulen, G.M. Williams, G.E. Langlois, Chem. Eng. Progr. 51 (1955) 85F.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Technologies Research and Development Program (Nos. 2017YFC0210404 and 2017YFC0210403-04) and the National Natural Science Foundation of China (Nos. U1760120, U1710257, U1702253, and U1903129).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Liu.

Appendix

Appendix

Dimensionless form of Calderbank equation is given below.

Under the conditions that the stirring power is completely dissipated using baffles, it can be expressed by

$$ P \propto \rho n^{3} l^{5} $$
(A1)

If the geometric similarity hold, the bath volume V is taken as

$$ V \propto L^{3} \propto l^{3} $$
(A2)

Then,

$$ {P \mathord{\left/ {\vphantom {P V}} \right. \kern-\nulldelimiterspace} V} \propto \rho n^{3} l^{2} $$
(A3)

Ignoring the last term in Eq. (1), the Calderbank equation can be arranged as follows:

$$ {{d_{\rm B} } \mathord{\left/ {\vphantom {{d_{B} } l}} \right. \kern-\nulldelimiterspace} l} \propto \varepsilon^{0.5} We^{{ - {3 \mathord{\left/ {\vphantom {3 5}} \right. \kern-\nulldelimiterspace} 5}}} $$
(A4)

Thus, the power of the Weber number of Eq. (1) or Eq. (A4) (− 3/5) is similar to that of Eq. (6) (− 0.5). It is to be noted that the average diameter of droplets dispersed in liquid under mechanical stirring is proportional to We−3/5 [25].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Liu, Y., Sano, M. et al. Bubble behavior in cylindrical and square vessels under centric mechanical stirring. J. Iron Steel Res. Int. 28, 1243–1250 (2021). https://doi.org/10.1007/s42243-021-00609-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00609-y

Keywords

Navigation