Skip to main content

Advertisement

Log in

The p53 status in rheumatoid arthritis with focus on fibroblast-like synoviocytes

  • Review
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

P53 is a transcription factor that regulates many signaling pathways like apoptosis, cell cycle, DNA repair, and cellular stress responses. P53 is involved in inflammatory responses through the regulation of inflammatory signaling pathways, induction of cytokines, and matrix metalloproteinase expression. Also, p53 regulates immune responses through modulating Toll-like receptors expression and innate and adaptive immune cell differentiation and maturation. P53 is a modulator of the apoptosis and proliferation processes through regulating multiple anti and pro-apoptotic genes. Rheumatoid arthritis (RA) is categorized as an invasive inflammatory autoimmune disease with irreversible deformity of joints and bone resorption. Different immune and non-immune cells contribute to RA pathogenesis. Fibroblast-like synoviocytes (FLSs) have been recently introduced as a key player in the pathogenesis of RA. These cells in RA synovium produce inflammatory cytokines and matrix metalloproteinases which results in synovitis and joint destruction. Besides, hyper proliferation and apoptosis resistance of FLSs lead to synovial hyperplasia and bone and cartilage destruction. Given the critical role of p53 in inflammation, apoptosis, and cell proliferation, lack of p53 function (due to mutation or low expression) exerts a prominent role for this gene in the pathogenesis of RA. This review focuses on the role of p53 in different mechanisms and cells (specially FLSs) that involved in RA pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material

Not applicable.

Abbreviations

Ag:

Antigen

AGO2:

Argonaute RISC catalytic component 2

AID:

Activation-induced cytidine deaminase

AP-1:

Activator protein 1

APCs:

Antigen-presenting cells

autoAbs:

Autoantibodies

Bcl2:

B cell lymphoma 2

BRG1:

Brahma-related gene 1

CKI:

Cyclin-dependent kinase inhibitor 1

cyr61:

Cysteine-rich angiogenic inducer 61

DC:

Dendritic cells

DD1α:

Death domain1α

DDRs:

DNA damage responses

DN:

Double negative

DNMTs:

DNA methyltransferases

DUSP:

Dual-specificity phosphatases

ECM:

Extracellular matrix

ERK:

Extracellular regulated kinase

FLSs:

Fibroblast-like synoviocytes

Foxp3:

Forkhead box P3

GADD45A:

Growth arrest and DNA damage-inducible alpha

HATs:

Histone acetyltransferases

HDACs:

Histone deacetylases

HIF-1α:

Hypoxia-inducible factor 1-alpha

IFN-γ:

Interferon-γ

IL:

Interleukin

iNOS:

Inducible nitric oxide synthase

iTreg:

Induced Treg

JNK:

C-Jun N-terminal kinase

MAPK:

Mitogen-activated protein kinases

MDM-2:

Mouse double minute 2 homolog

MIF:

Macrophage migration inhibitory factor

MKP-1:

MAPK phosphatase-1

MLSs:

Macrophage-like synoviocytes

MMPs:

Matrix metalloproteinases

MSH6:

MutS Homolog 6

NF-κB:

Nuclear factor-κB

NO:

Nitric oxide

OA:

Osteoarthritis

P53AIP1:

P53-regulated apoptosis-inducing protein 1

PADI4:

Peptidyl arginine deiminase 4

PBMCs:

Peripheral blood mononuclear cells

PCNA:

Proliferating cell nuclear Ag

PERP:

P53 apoptosis effector related to PMP-22

PGs:

Prostaglandins

PRR:

Pattern recognition receptor

PUMA:

P53 upregulated mediator of apoptosis

REs:

Responsive elements

RA:

Rheumatoid arthritis

RANKL:

Receptor activator of nuclear factor-κB ligand

Rb:

Retinoblastoma

RGS:

Regulator of G protein signaling

RNSs:

Reactive nitrogen species

ROSs:

Reactive oxygen species

SCID:

Severe combined immunodeficiency

SP:

Single positive

TLRs:

Toll-like receptors

TNF-α:

Tumor necrosis factor-α

TP53:

P53 tumor suppressor gene

Treg :

T regulatory

TSP-1:

Thrombospondin-1

VEGF:

Vascular endothelial growth factor

WIP-1:

Wild-type p53-induced phosphatase-1

wt-P53:

Wild-type P53

XIAP:

X-linked inhibitor of apoptosis protein

References

  1. Smolen JS, Aletaha D, Barton A, Burmester GR, Emery P, Firestein GS, et al. Rheumatoid arthritis Nature Reviews Disease Primers. 2018;4:18001.

    Article  PubMed  Google Scholar 

  2. Croia C, Bursi R, Sutera D, Petrelli F, Alunno A, Puxeddu I. One year in review 2019: pathogenesis of rheumatoid arthritis. Clin Exp Rheumatol. 2019;37:347–57.

    PubMed  Google Scholar 

  3. Smolen JS, Aletaha D, Koeller M, Weisman MH, Emery P. New therapies for treatment of rheumatoid arthritis. The Lancet. 2007;370:1861–74.

    Article  CAS  Google Scholar 

  4. Hashimoto M. Th17 in animal models of rheumatoid arthritis. J Clin Med. 2017;6:73.

    Article  PubMed Central  Google Scholar 

  5. Yoshida Y, Tanaka T. Interleukin 6 and rheumatoid arthritis. BioMed Res Int. 2014;2014:698313. https://doi.org/10.1155/2014/698313.

  6. Fattahi MJ, Mirshafiey A. Prostaglandins and rheumatoid arthritis. Arthritis. 2012;2012:239310.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Shibuya H, Yoshitomi H, Murata K, Kobayashi S, Furu M, Ishikawa M, et al. TNFα, PDGF, and TGFβ synergistically induce synovial lining hyperplasia via inducible PI3Kδ. Mod Rheumatol. 2015;25:72–8.

    Article  CAS  PubMed  Google Scholar 

  8. Ogata A, Kato Y, Higa S, Yoshizaki K. IL-6 inhibitor for the treatment of rheumatoid arthritis: a comprehensive review. Mod Rheumatol. 2019;29:258–67.

    Article  CAS  PubMed  Google Scholar 

  9. Bottini N, Firestein GS. Duality of fibroblast-like synoviocytes in RA: passive responders and imprinted aggressors. Nat Rev Rheumatol. 2013;9:24.

    Article  CAS  PubMed  Google Scholar 

  10. Tak PP, Zvaifler NJ, Green DR, Firestein GS. Rheumatoid arthritis and p53: how oxidative stress might alter the course of inflammatory diseases. Immunol Today. 2000;21:78–82.

    Article  CAS  PubMed  Google Scholar 

  11. Firestein GS. Invasive fibroblast-like synoviocytes in rheumatoid arthritis Passive responders or transformed aggressors? Arthritis Rheum. 1996;39:1781–90.

    Article  CAS  PubMed  Google Scholar 

  12. Müller-Ladner U, Kriegsmann J, Franklin BN, Matsumoto S, Geiler T, Gay RE, et al. Synovial fibroblasts of patients with rheumatoid arthritis attach to and invade normal human cartilage when engrafted into SCID mice. Am J Pathol. 1996;149:1607.

    PubMed  PubMed Central  Google Scholar 

  13. Arrowsmith CH. Structure and function in the p53 family. Cell Death Differ. 1999;6:1169–73.

    Article  CAS  PubMed  Google Scholar 

  14. Yamanishi Y, Boyle DL, Pinkoski MJ, Mahboubi A, Lin T, Han Z, et al. Regulation of joint destruction and inflammation by p53 in collagen-induced arthritis. Am J Pathol. 2002;160:123–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Levine A, Hu W, Feng Z. The P53 pathway: what questions remain to be explored? Cell Death Differ. 2006;13:1027.

    Article  CAS  PubMed  Google Scholar 

  16. Aupperle KR, Boyle DL, Hendrix M, Seftor EA, Zvaifler NJ, Barbosa M, et al. Regulation of synoviocyte proliferation, apoptosis, and invasion by the p53 tumor suppressor gene. Am J Pathol. 1998;152:1091.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lane DP. Cancer p53 guardian of the genome. Nature. 1992;358:15–6.

    Article  CAS  PubMed  Google Scholar 

  18. Han Z, Boyle DL, Shi Y, Green DR, Firestein GS. Dominant-negative p53 mutations in rheumatoid arthritis. Arthritis Rheum. 1999;42:1088–92.

    Article  CAS  PubMed  Google Scholar 

  19. Malemud C, Haque A, Louis N, Wang J. Immune response and apoptosis–intro-duction. J Clin Cell Immunol Sci. 2012;3:e001.

    Google Scholar 

  20. Tak PP, Smeets TJ, Boyle DL, Kraan MC, Shi Y, Zhuang S, et al. p53 overexpression in synovial tissue from patients with early and longstanding rheumatoid arthritis compared with patients with reactive arthritis and osteoarthritis. Arthritis Rheum. 1999;42:948–53.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang T, Li H, Shi J, Li S, Li M, Zhang L, et al. p53 predominantly regulates IL-6 production and suppresses synovial inflammation in fibroblast-like synoviocytes and adjuvant-induced arthritis. Arthritis Res Ther. 2016;18:271.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Taranto E, Xue JR, Lacey D, Hutchinson P, Smith M, Morand EF, et al. Detection of the p53 regulator murine double-minute protein 2 in rheumatoid arthritis. J Rheumatol. 2005;32:424–9.

    CAS  PubMed  Google Scholar 

  23. Seemayer CA, Kuchen S, Neidhart M, Kuenzler P, Řihošková V, Neumann E, et al. p53 in rheumatoid arthritis synovial fibroblasts at sites of invasion. Ann Rheum Dis. 2003;62:1139–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee CS, Portek I, Edmonds J, Kirkham B. Synovial membrane p53 protein immunoreactivity in rheumatoid arthritis patients. Ann Rheum Dis. 2000;59:143–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sugiyama M, Tsukazaki T, Yonekura A, Matsuzaki S, Yamashita S, Iwasaki K. Localisation of apoptosis and expression of apoptosis related proteins in the synovium of patients with rheumatoid arthritis. Ann Rheum Dis. 1996;55:442–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mc Gonagle D, Reece R, Green M, Jack A, Veale D, Emery P. p53 Is not demonstrable by immunohistochemistry in early rheumatoid arthritis. Arthritis Rheum. 1997;40:S119-S.

  27. Salvador G, Sanmarti R, Garcia-Peiro A, Rodriguez-Cros J, Munoz-Gomez J, Canete J. p53 expression in rheumatoid and psoriatic arthritis synovial tissue and association with joint damage. Ann Rheum Dis. 2005;64:183–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xiao C, Pan Y, Guo X, Wu Y, Gu J, Cai D. Expression of β-catenin in rheumatoid arthritis fibroblast-like synoviocytes. Scand J Rheumatol. 2011;40:26–33.

    Article  CAS  PubMed  Google Scholar 

  29. Maas K, Westfall M, Pietenpol J, Olsen NJ, Aune T. Reduced p53 in peripheral blood mononuclear cells from patients with rheumatoid arthritis is associated with loss of radiation-induced apoptosis. Arthritis Rheum. 2005;52:1047–57.

    Article  CAS  PubMed  Google Scholar 

  30. Du Y, Deng L, Li Y, Gan L, Wang Y, Shi G. Decreased PERP expression on peripheral blood mononuclear cells from patient with rheumatoid arthritis negatively correlates with disease activity. Clin Dev Immunol. 2013;2013.

  31. Sionov RV and Haupt Y, editors. Apoptosis by p53: mechanisms, regulation, and clinical implications. Springer seminars in immunopathology; 1998: Springer.

  32. Lee S-H, Chang DK, Goel A, Boland CR, Bugbee W, Boyle DL, et al. Microsatellite instability and suppressed DNA repair enzyme expression in rheumatoid arthritis. J Immunol. 2003;170:2214–20.

    Article  CAS  PubMed  Google Scholar 

  33. Yamanishi Y, Boyle DL, Green DR, Keystone EC, Connor A, Zollman S, et al. p53 tumor suppressor gene mutations in fibroblast-like synoviocytes from erosion synovium and non-erosion synovium in rheumatoid arthritis. Arthritis Res Ther. 2004;7:R12.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Firestein GS, Echeverri F, Yeo M, Zvaifler NJ, Green DR. Somatic mutations in the p53 tumor suppressor gene in rheumatoid arthritis synovium. Proc Natl Acad Sci. 1997;94:10895–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Altindag O, Karakoc M, Kocyigit A, Celik H, Soran N. Increased DNA damage and oxidative stress in patients with rheumatoid arthritis. Clin Biochem. 2007;40:167–71.

    Article  CAS  PubMed  Google Scholar 

  36. Forrester K, Ambs S, Lupold SE, Kapust RB, Spillare EA, Weinberg WC, et al. Nitric oxide-induced p53 accumulation and regulation of inducible nitric oxide synthase expression by wild-type p53. Proc Natl Acad Sci. 1996;93:2442–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Igarashi H, Hashimoto J, Tomita T, Yoshikawa H, Ishihara K. TP53 mutations coincide with the ectopic expression of activation-induced cytidine deaminase in the fibroblast-like synoviocytes derived from a fraction of patients with rheumatoid arthritis. Clin Exp Immunol. 2010;161:71–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Goloudina AR, Kochetkova EY, Pospelova TV, Demidov ON. Wip1 phosphatase: between p53 and MAPK kinases pathways. Oncotarget. 2016;7:31563.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kawauchi K, Araki K, Tobiume K, Tanaka N. Activated p53 induces NF-kappaB DNA binding but suppresses its transcriptional activation. Biochem Biophys Res Commun. 2008;372:137–41.

    Article  CAS  PubMed  Google Scholar 

  40. Son D-S, Kabir SM, Dong Y-L, Lee E, Adunyah SE. Inhibitory effect of tumor suppressor p53 on proinflammatory chemokine expression in ovarian cancer cells by reducing proteasomal degradation of IκB. PLoS ONE. 2012;7:e51116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xia Y, Padre RC, De Mendoza TH, Bottero V, Tergaonkar VB, Verma IM. Phosphorylation of p53 by IkappaB kinase 2 promotes its degradation by beta-TrCP. Proc Natl Acad Sci USA. 2009;106:2629–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lim HS, Kim YJ, Kim BY, Jeong SJ. Bakuchiol suppresses inflammatory responses via the downregulation of the p38 MAPK/ERK signaling pathway. Int J Mol Sci. 2019;20.

  43. Yin Y, Liu Y-X, Jin YJ, Hall EJ, Barrett JC. PAC1 phosphatase is a transcription target of p53 in signalling apoptosis and growth suppression. Nature. 2003;422:527.

    Article  CAS  PubMed  Google Scholar 

  44. Takekawa M, Adachi M, Nakahata A, Nakayama I, Itoh F, Tsukuda H, et al. p53-inducible Wip1 phosphatase mediates a negative feedback regulation of p38 MAPK-p53 signaling in response to UV radiation. EMBO J. 2000;19:6517–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cha H, Lowe JM, Li H, Lee J-S, Belova GI, Bulavin DV, et al. Wip1 directly dephosphorylates γ-H2AX and attenuates the DNA damage response. Can Res. 2010;70:4112–22.

    Article  CAS  Google Scholar 

  46. Lu X, Ma O, Nguyen T-A, Jones SN, Oren M, Donehower LA. The Wip1 Phosphatase acts as a gatekeeper in the p53-Mdm2 autoregulatory loop. Cancer Cell. 2007;12:342–54.

    Article  CAS  PubMed  Google Scholar 

  47. Perlman H, Bradley K, Liu H, Cole S, Shamiyeh E, Smith RC, et al. IL-6 and matrix metalloproteinase-1 are regulated by the cyclin-dependent kinase inhibitor p21 in synovial fibroblasts. J Immunol. 2003;170:838–45.

    Article  CAS  PubMed  Google Scholar 

  48. van Hamburg JP, Asmawidjaja PS, Davelaar N, Mus AM, Colin EM, Hazes JM, et al. Th17 cells, but not Th1 cells, from patients with early rheumatoid arthritis are potent inducers of matrix metalloproteinases and proinflammatory cytokines upon synovial fibroblast interaction, including autocrine interleukin-17A production. Arthritis Rheum. 2011;63:73–83.

    Article  PubMed  Google Scholar 

  49. Kimura A, Kishimoto T. IL-6: regulator of Treg/Th17 balance. Eur J Immunol. 2010;40:1830–5.

    Article  CAS  PubMed  Google Scholar 

  50. Yamanishi Y, Boyle DL, Rosengren S, Green DR, Zvaifler NJ, Firestein GS. Regional analysis of p53 mutations in rheumatoid arthritis synovium. Proc Natl Acad Sci U S A. 2002;99:10025–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zheng S-J, Lamhamedi-Cherradi S-E, Wang P, Xu L, Chen YH. Tumor suppressor p53 inhibits autoimmune inflammation and macrophage function. Diabetes. 2005;54:1423–8.

    Article  CAS  PubMed  Google Scholar 

  52. Ameyar M, Wisniewska M, Weitzman J. A role for AP-1 in apoptosis: the case for and against. Biochimie. 2003;85:747–52.

    Article  CAS  PubMed  Google Scholar 

  53. Lin J, Huo R, Xiao L, Zhu X, Xie J, Sun S, et al. A novel p53/microRNA-22/Cyr61 axis in synovial cells regulates inflammation in rheumatoid arthritis. Arthritis Rheumatol. 2014;66:49–59.

    Article  CAS  PubMed  Google Scholar 

  54. Lin J, Zhou Z, Huo R, Xiao L, Ouyang G, Wang L, et al. Cyr61 induces IL-6 production by fibroblast-like synoviocytes promoting Th17 differentiation in rheumatoid arthritis. J Immunol. 2012;188:5776–84.

    Article  CAS  PubMed  Google Scholar 

  55. Paleolog EM. Angiogenesis in rheumatoid arthritis. Arthritis Res. 2002;4(Suppl 3):S81-90.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Dameron KM, Volpert OV, Tainsky MA, Bouck N. Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science. 1994;265:1582–4.

    Article  CAS  PubMed  Google Scholar 

  57. Teodoro JG, Parker AE, Zhu X, Green MR. p53-mediated inhibition of angiogenesis through up-regulation of a collagen prolyl hydroxylase. Science. 2006;313:968–71.

    Article  CAS  PubMed  Google Scholar 

  58. Oda S, Oda T, Nishi K, Takabuchi S, Wakamatsu T, Tanaka T, et al. Macrophage migration inhibitory factor activates hypoxia-inducible factor in a p53-dependent manner. PLoS ONE. 2008;3:e2215.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Fingerle-Rowson G, Petrenko O, Metz C, Forsthuber T, Mitchell R, Huss R, et al. The p53-dependent effects of macrophage migration inhibitory factor revealed by gene targeting. Proc Natl Acad Sci. 2003;100:9354–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ravi R, Mookerjee B, Bhujwalla ZM, Sutter CH, Artemov D, Zeng Q, et al. Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1α. Genes Dev. 2000;14:34–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wymann D, Blüggel M, Kalbacher H, Blesken T, Akdis C, Meyer H, et al. Human B cells secrete migration inhibition factor (MIF) and present a naturally processed MIF peptide on HLA-DRB1* 0405 by a FXXL motif. Immunology. 1999;96:1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Santos L, Hall P, Metz C, Bucala R, Morand E. Role of macrophage migration inhibitory factor (MIF) in murine antigen-induced arthritis: interaction with glucocorticoids. Clin Exp Immunol. 2001;123:309–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hudson JD, Shoaibi MA, Maestro R, Carnero A, Hannon GJ, Beach DH. A proinflammatory cytokine inhibits p53 tumor suppressor activity. J Exp Med. 1999;190:1375–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Liao H, Bucala R, Mitchell RA. Adhesion-dependent signaling by macrophage migration inhibitory factor (MIF). J Biol Chem. 2003;278:76–81.

    Article  CAS  PubMed  Google Scholar 

  65. Mitchell RA, Metz CN, Peng T, Bucala R. Sustained mitogen-activated protein kinase (MAPK) and cytoplasmic phospholipase A2 activation by macrophage migration inhibitory factor (MIF) Regulatory role in cell proliferation and glucocorticoid action. J Biol Chem. 1999;274:18100–6.

    Article  CAS  PubMed  Google Scholar 

  66. Leech M, Lacey D, Xue JR, Santos L, Hutchinson P, Wolvetang E, et al. Regulation of p53 by macrophage migration inhibitory factor in inflammatory arthritis. Arthritis Rheum. 2003;48:1881–9.

    Article  CAS  Google Scholar 

  67. Menendez D, Lowe JM, Snipe J, Resnick MA. Ligand dependent restoration of human TLR3 signaling and death in p53 mutant cells. Oncotarget. 2016;7:61630.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Huang QQ, Pope RM. The role of toll-like receptors in rheumatoid arthritis. Curr Rheumatol Rep. 2009;11:357–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wehr P, Purvis H, Law SC, Thomas R. Dendritic cells. T cells and their interaction in rheumatoid arthritis. 2019;196:12–27.

    CAS  Google Scholar 

  70. Ade N, Antonios D, Kerdine-Romer S, Boisleve F, Rousset F, Pallardy M. NF-κB plays a major role in the maturation of human dendritic cells induced by NiSO4 but not by DNCB. Toxicol Sci. 2007;99:488–501.

    Article  CAS  PubMed  Google Scholar 

  71. Popa C, van Lieshout AW, Roelofs MF, Geurts-Moespot A, van Riel PL, Calandra T, et al. MIF production by dendritic cells is differentially regulated by Toll-like receptors and increased during rheumatoid arthritis. Cytokine. 2006;36:51–6.

    Article  CAS  PubMed  Google Scholar 

  72. Zhong H, Neubig RR. Regulator of G protein signalingp: novel multifunctional drug targets. J Pharmacol Exp Ther. 2001;297:837.

    CAS  PubMed  Google Scholar 

  73. Wang B, Niu D, Lam T, Xiao Z, Ren E. Mapping the p53 transcriptome universe using p53 natural polymorphs. Cell Death Differ. 2014;21:521–32.

    Article  CAS  PubMed  Google Scholar 

  74. Wang D, Liu Y, Li Y, He Y, Zhang J, Shi G. Gαq regulates the development of rheumatoid arthritis by modulating Th1 differentiation. Mediat Inflamm. 2017;2017.

  75. Wang Y, Li Y, He Y, Sun Y, Sun W, Xie Q, et al. Expression of G protein αq subunit is decreased in lymphocytes from patients with rheumatoid arthritis and is correlated with disease activity. Scand J Immunol. 2012;75:203–9.

    Article  CAS  PubMed  Google Scholar 

  76. Wang Y, Xiao H, Wu H, Yao C, He H, Wang C, et al. G protein subunit α q regulates gastric cancer growth via the p53/p21 and MEK/ERK pathways. Oncol Rep. 2017;37:1998–2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. McKelvey KJ, Millier MJ, Doyle TC, Stamp LK, Highton J, Hessian PA. Co-expression of CD21L and IL17A defines a subset of rheumatoid synovia, characterised by large lymphoid aggregates and high inflammation. PLoS ONE. 2018;13:e0202135.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Iwaki S, Lu Y, Xie Z, Druey KM. p53 negatively regulates RGS13 protein expression in immune cells. J Biol Chem. 2011;286:22219–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tang BX, You X, Zhao LD, Li Y, Zhang X, Tang FL, et al. p53 in fibroblast-like synoviocytes can regulate T helper cell functions in patients with active rheumatoid arthritis. Chin Med J (Engl). 2011;124:364–8.

    CAS  Google Scholar 

  80. Kawashima H, Takatori H, Suzuki K, Iwata A, Yokota M, Suto A, et al. Tumor suppressor p53 inhibits systemic autoimmune diseases by inducing regulatory T cells. J Immunol. 2013;191:3614–23.

    Article  CAS  PubMed  Google Scholar 

  81. Malemud CJ. Defective T-cell apoptosis and T-regulatory cell dysfunction in rheumatoid arthritis. Cells. 2018;7:223.

    Article  CAS  PubMed Central  Google Scholar 

  82. Shen X-F, Zhao Y, Jiang J-P, Guan W-X, Du J-F. Phosphatase Wip1 in immunity: an overview and update. Front Immunol. 2017;8.

  83. Liu M-F, Yang C-Y, Chao S-C, Li J-S, Weng T-H, Lei H-Y. Distribution of double-negative (CD4− CD8−, DN) T subsets in blood and synovial fluid from patients with rheumatoid arthritis. Clin Rheumatol. 1999;18:227–31.

    Article  CAS  PubMed  Google Scholar 

  84. Samuels J, Ng Y-S, Paget D, Meffre E. Impaired early B-cell tolerance in patients with rheumatoid arthritis. Arthritis Res Ther. 2005;7:1–2.

    Article  Google Scholar 

  85. Tardito S, Martinelli G, Soldano S, Paolino S, Pacini G, Patane M, et al. Macrophage M1/M2 polarization and rheumatoid arthritis: a systematic review. Autoimmun Rev. 2019;18:102397.

    Article  CAS  PubMed  Google Scholar 

  86. Li L, Ng DS, Mah WC, Almeida FF, Rahmat SA, Rao VK, et al. A unique role for p53 in the regulation of M2 macrophage polarization. Cell Death Differ. 2015;22:1081–93.

    Article  CAS  PubMed  Google Scholar 

  87. Oda K, Arakawa H, Tanaka T, Matsuda K, Tanikawa C, Mori T, et al. p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell. 2000;102:849–62.

    Article  CAS  PubMed  Google Scholar 

  88. Haupt S, Berger M, Goldberg Z, Haupt Y. Apoptosis-the p53 network. J Cell Sci. 2003;116:4077–85.

    Article  CAS  PubMed  Google Scholar 

  89. Igarashi H, Hirano H, Yahagi A, Saika T, Ishihara K. Anti-apoptotic roles for the mutant p53R248Q through suppression of p53-regulated apoptosis-inducing protein 1 in the RA-derived fibroblast-like synoviocyte cell line MH7A. Clin Immunol. 2014;150:12–21.

    Article  CAS  PubMed  Google Scholar 

  90. Chen S-Y, Shiau A-L, Wu C-L, Wang C-R. P53-derived hybrid peptides induce apoptosis of synovial fibroblasts in the rheumatoid joint. Oncotarget. 2017;8:115413.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Li H, Wan A. Apoptosis of rheumatoid arthritis fibroblast-like synoviocytes: possible roles of nitric oxide and the thioredoxin 1. Mediators Inflamm. 2013;2013:953462.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Xiao P, Hao Y, Zhu X, Wu X. p53 contributes to quercetin-induced apoptosis in human rheumatoid arthritis fibroblast-like synoviocytes. Inflammation. 2013;36:272–8.

    Article  CAS  PubMed  Google Scholar 

  93. Sung M-S, Lee E-G, Jeon H-S, Chae H-J, Park SJ, Lee YC, et al. Quercetin inhibits IL-1β-induced proliferation and production of MMPs, COX-2, and PGE2 by rheumatoid synovial fibroblast. Inflammation. 2012;35:1585–94.

    Article  CAS  PubMed  Google Scholar 

  94. Hou H, Xing W and Li W. Brahma-related gene 1 induces apoptosis in a p53-dependent manner in human rheumatoid fibroblast-like synoviocyte MH7A. Medicine. 2016;95.

  95. Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell. 1993;75:805–16.

    Article  CAS  PubMed  Google Scholar 

  96. El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, et al. WAF1, a potential mediator of p53 tumor suppression. Cell. 1993;75:817–25.

    Article  CAS  PubMed  Google Scholar 

  97. Yamanishi Y, Boyle DL, Pinkoski MJ, Mahboubi A, Lin T, Han Z, et al. Regulation of joint destruction and inflammation by p53 in collagen-induced arthritis. Am J Pathol. 2002;160:123–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Muñoz-Fontela C, Mandinova A, Aaronson SA, Lee SW. Emerging roles of p53 and other tumour-suppressor genes in immune regulation. Nat Rev Immunol. 2016;16:741.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Nemtsova MV, Zaletaev DV, Bure IV, Mikhaylenko DS, Kuznetsova EB, Alekseeva EA, et al. Epigenetic changes in the pathogenesis of rheumatoid arthritis. Front Genet. 2019;10.

  100. Hodge DR, Peng B, Cherry JC, Hurt EM, Fox SD, Kelley JA, et al. Interleukin 6 supports the maintenance of p53 tumor suppressor gene promoter methylation. Cancer Res. 2005;65:4673–82.

    Article  CAS  PubMed  Google Scholar 

  101. Glant TT, Mikecz K, Rauch TA. Epigenetics in the pathogenesis of rheumatoid arthritis. BMC Med. 2014;12:35.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Grabiec AM. Regulation of inflammation by histone deacetylases in rheumatoid arthritis: beyond. Epigenetics 2012.

  103. Gu W, Roeder RG. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell. 1997;90:595–606.

    Article  CAS  PubMed  Google Scholar 

  104. Hull EE, Montgomery MR and Leyva KJ. HDAC inhibitors as epigenetic regulators of the immune system: impacts on cancer therapy and inflammatory diseases. BioMed Res Int. 2016;2016.

  105. Horiuchi M, Morinobu A, Chin T, Sakai Y, Kurosaka M, Kumagai S. Expression and function of histone deacetylases in rheumatoid arthritis synovial fibroblasts. J Rheumatol. 2009;36:1580–9.

    Article  CAS  PubMed  Google Scholar 

  106. Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell. 2004;119:941–53.

    Article  CAS  PubMed  Google Scholar 

  107. Zhai Q, Wang L, Zhao P, Li T. Role of citrullination modification catalyzed by peptidylarginine deiminase 4 in gene transcriptional regulation. Acta Biochim Biophys Sin. 2017;49:567–72.

    Article  CAS  PubMed  Google Scholar 

  108. Bartel DP. MicroRNAs target recognition and regulatory functions. Cell. 2009;136:215–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Boominathan L. The tumor suppressors p53, p63, and p73 are regulators of microRNA processing complex. PLoS ONE. 2010;5:e10615.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Mizoguchi F, Hasegawa H and Kohsaka H, editors. Functional screening of micrornas using the inhibitor library identified micrornas to regulate expression of MMP-3 and IL-6 in rheumatoid arthritis synovial fibroblasts. Arthritis Rheumatol; 2016: Wiley

  111. Moran-Moguel MC, Petarra-Del Rio S, Mayorquin-Galvan EE, Zavala-Cerna MG. Rheumatoid arthritis and miRNAs: a critical review through a functional view. J Immunol Res. 2018;2018:2474529.

  112. Niederer F, Trenkmann M, Ospelt C, Karouzakis E, Neidhart M, Stanczyk J, et al. Down-regulation of microRNA-34a* in rheumatoid arthritis synovial fibroblasts promotes apoptosis resistance. Arthritis Rheum. 2012;64:1771–9.

    Article  CAS  PubMed  Google Scholar 

  113. Feng Z, Zhang C, Wu R, Hu W. Tumor suppressor p53 meets microRNAs. J Mol Cell Biol. 2011;3:44–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Inazuka M, Tahira T, Horiuchi T, Harashima S, Sawabe T, Kondo M, et al. Analysis of p53 tumour suppressor gene somatic mutations in rheumatoid arthritis synovium. Rheumatology. 2000;39:262–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MT and MA: acquisition of data, drafting the article, designed the figures, final approval of the version to be submitted. EF and MM: the conception and design of the study, revising it critically for important intellectual content, designed the figures, final approval of the version to be submitted. AJ: interpretation of data, revising it critically for important intellectual content, final approval of the version to be submitted.

Corresponding authors

Correspondence to Mahdi Mahmoudi or Elham Farhadi.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Mahdi Taghadosi and Mehrnoosh Adib Contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taghadosi, M., Adib, M., Jamshidi, A. et al. The p53 status in rheumatoid arthritis with focus on fibroblast-like synoviocytes. Immunol Res 69, 225–238 (2021). https://doi.org/10.1007/s12026-021-09202-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-021-09202-7

Keywords

Navigation