Skip to main content
Log in

Geochemical Characteristics and Geological Significance of the Late Cretaceous Alkaline Basalts in the Zongzhuo Formation Located in the Mid-eastern Region of the Tethys Himalaya

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The Tethys Himalaya tectonic belt has long been a passive continental margin north of Gondwana, commonly known as the Tethys Himalaya, which Indo-Asian collision orogeny developed until the Cenozoic era. It is of great scientific significance to determine its geo-tectonic evolution over geological history. Therefore, to reveal the geodynamic background of the Late Cretaceous Tethys Himalaya and its internal connection with the subduction of the Neo-Tethys ocean, in this study, we analysed the petrology, and whole-rock geochemistryof the Zongzhuo Formation basalt, which is widely distributed in the Tethys Himalaya Rongbu area. Further, we investigated the basalt types, magma source, tectonic setting and causes that gave rise to the Zongzhuo Formation to further research on the evolution of the Tethys Himalaya tectonic domain. The Zongzhuo Formation features a basalt set of compatible elements and is characterised by low Cr (average: 86.838 ppm) and enrichment of high-field-strength elements (e.g. Nb, Ta and Hf). The characteristics of the major elements, i.e. high TFeO (average: 10.43 wt %), TiO2 (average: 3.44 wt %) and P2O5 (average: 0.47 wt %), indicate an oceanic–island–basalt (OIB) geochemical signature with obvious light REE and heavy REE fractionation. The characteristics of the trace elements confirm the alkalinity of the Zongzhuo Formation basalts. Based on these results, the Zongzhuo Formation basalt was assigned to within–plate OIB. The magma might be the metasomatism products of the oceanic lithosphere mantle with low crystal fractionation and no crustal contamination, its tectonic background includes a passive–to–active transformation in the continental margin. By analysing the Tethys Himalaya belt in the south of Tibet, we concluded that the Zongzhuo Formation basalt strata in the Rongbu area were likely formed owing to Mesozoic volcanic activity and the extension and thinning of the Tethys Himalaya in the area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. A. K. Baksi, “Petrogenesis and timing of volcanism in the Rajmahal flood basalt province, northeastern India,” Chem. Geol. 121 (1), 73–90 (1995).

    Article  Google Scholar 

  2. J. Cheng, W. G. Shi, W. F. Zhang, J. Guo, J. Zhai, and M. W. J. Mi, “Ages and provenance of the Zongzhuo formation of melanges in Bailang area, Southern Xizang (Tibet): evidence from petrology and detratal zircon U–Pb geochronology,” Geol. Rev. 63 (6), 1440–1450 (2017).

    Google Scholar 

  3. K. C. Condie, B. A. Frey, and R. Kerrich, “The 1.75 Ga Iron King Volcanics in west-central Arizona: a remnant of accreted oceanic plateau derived from a mantle plume with a deep depleted component,” Lithos. 64 (1–2), 49–62 (2002).

    Article  Google Scholar 

  4. J. F. Dewey, S. Cande, and W. C. Pitman, “Tectonic evolution of the India-Eurasia collision zone,” Ecl. Geol. Helvet. 82, 717–734 (1989).

    Google Scholar 

  5. L. Ding and Q. Z. Lai, “Geological evidence of thickening and uplift before the collision of the Gangdese crust: The history restriction of island arc coalescence on the uplift and expansion of the Qinghai–Tibet Plateau,” Chinese Sci. Bull. 48 (8), 836–842 (2003).

    Google Scholar 

  6. L. G. Dong, M. Li, and Y. X. Li, “Basalts from the Mazhala area in southern Xizang: geochemistry, petrogenesis and geological implications,” Sediment. Geol. Teth. Geol. 36 (3), 16–24 (2016).

    Google Scholar 

  7. F. A. Frey, “Involvement of continental crust in the formation of the Cretaceous Kerguelen Plateau: new perspectives from ODP Leg 120 sites.” J. Petrol. 43 (7), 1207–1239 (2002).

    Article  Google Scholar 

  8. F. A. Frey, N. J. Mcnaughton, D. R. Nelson, J. R. Delaeter and R. A. Duncan, “Petrogenesis of the Bunbury Basalt, Western Australia: interaction between the Kerguelen plume and Gondwana lithosphere?” J. Afr. Earth Sci. 26 (2), 519–522 (1996).

    Google Scholar 

  9. D. R. Fu, X. Liu, and P. Y. Yao, “The late Jurassic–Cretaceous sedimentary–tectonic development of the southern Tibet,” Acta Geol. Sinica 2, 21–40 (1990).

    Google Scholar 

  10. Z. Q. Hou, Z. D. Zhao, Y. F. Gao, Z. M. Yang, and W. Jiang, “Tearing and dischronal subduction of the Indian continental slab: Evidence from Cenozoic Gangdese volcano–magmatic rocks in south Tibet,” Acta Petrol. Sinica. 22 (04), 761–774 (2006).

    Google Scholar 

  11. J. Q. Huang, G. M. Chen, and B. W. Chen, “Preliminary analysis of the Tethys-Himalayan tectonic domain,” Acta Geol. Sinica. 58 (01), 1–17 (1984).

    Google Scholar 

  12. Y. Huang, W. Liang, L. K. Zhang, G. M. Li, C. M. Huang, X. B. Xia, S. L. Dong, and J. Y. Wu, “The initial break-up between Tethyan–Himalaya and Indian Terrane: evidences from Late Cretaceous OIB-type basalt in Southern Tibet,” Earth Sci. 43 (8), 2651–2663 (2018).

    Google Scholar 

  13. E. R. Humphreys and Y. L. Niu, “On the composition of ocean island basalts (OIB): The effects of lithospheric thickness variation and mantle metasomatism,” Lithos. 112, 118–136 (2009).

    Article  Google Scholar 

  14. W. Kent, A. D. Saunders, P. D. Kempton and N. C. Ghose, “Rajmahal basalts, eastern India: Mantle sources and melt distribution at a volcanic rifted margin.” Am. Geophys. Union Geophys. Monogr. 100, 145–182 (1997).

    Google Scholar 

  15. X. Le Pichon, M. Foumier, and L. Joliver, “Kinematics, topography, shortening and extrusion in the India-Eurasia collision,” Tectonics. 11, 1085–1098 (1992).

    Article  Google Scholar 

  16. Y. J. Li, C. X. Chen, G. R. Mai, Q. Zeng, J. C. Luo, Z. B. Huang, D. M. Zheng, and G. X. Peng, “Dual Foreland Basin Model of Continent-Continent Collision Orogenic Belt: Evidence from Dabieshan, Himalayan and Uralian Orogenic Belts,” Acta Geoscie. Sinica. 21 (01), 7–16 (2000).

    Google Scholar 

  17. B. Lin, J. X. Tang, W. B. Zheng, Q. F. Len, C. Yang, X. Q. Tang, Y. Huang, Y. Y. Wang, and J. Y. Tan, “Petrochemical features, zircon U–Pb dating and Hf isotopic composition of the rhyolite in Zhaxikang deposit, Southern Xizang (Tibet),” Geol. Rev. 60 (1), 178–189 (2014).

    Google Scholar 

  18. X. W. Lin, “Sedimentary chaotic melanges and their tectonic significance: Upper Cretaceous Zongzhuo Formation, Gyangze, Xizang,” Sediment. Geol. Teth. Geol. 18 (3), 28–33 (1998).

    Google Scholar 

  19. X. W. Liu and P. Liu, “Overview of the research on collision structure in the Himalayas in southern Tibet,” Global Geol. 13 (1), 129–135 (1994).

    Google Scholar 

  20. Q. W. Lu and G. H. Wang, “OIB–type basalt and E‒MORB–type basalt exist in the Gangtangcuo area, central Qiangtang, Tibet, China, and its tectonic significance,” Xinjiang Geol. 29 (3), 332–336 (2011).

    Google Scholar 

  21. J. J. Mahoney, “Geochemical characteristics of lavas from Broken Ridge, the Naturaliste Plateau and southernmost Kerguelen Plateau: Cretaceous plateau volcanism in the southeast Indian Ocean.” Chem. Geol. 120, (1995).

  22. W. F. McDonough, “Constraints on the composition of the continental lithospheric mantle.” Earth Planet Sci Lett. 101 (1), 1–18 (1990).

    Article  Google Scholar 

  23. D. McKenzie and R. K. O’Nions, “The source regions of oceanic island basalts,” J. Petrol. 36 (1), 133–159 (1995).

    Article  Google Scholar 

  24. M. Meschede, “A method of discriminating between different type of mid-ocean ridge basalts and continental tholeiites with the Nb–Zr–Y diagram.” Chemical Geology. 56, 207–218 (1986).

    Article  Google Scholar 

  25. E. A. K. Middlemost, “A simple classification of volcanic rocks,” Bull. Volcanol. 36 (2), 382–397 (1972).

    Article  Google Scholar 

  26. X. X. Mo, G. C. Dong, Z. D. Zhao, S. Zhou, L. L. Wang, R. Z. Qiu, and F. Q. Zhang, “Spatial and temporal distribution and characteristics of granitoids in the Gangdese, Tibet and implication for crustal growth and evolution,” Geol. J. China Univer. 11 (3), 281–290 (2005).

    Google Scholar 

  27. X. X. Mo, Z. Q. Hou, Y. L. Niu, G. C. Dong, X. M. Qu, Z. D. Zhao, and Z. M. Yang, “Mantle contributions to crustal thickening during continental collision: evidence from Cenozoic igneous rocks in southern Tibet,” Lithos. 96 (1–2), 225–242 (2007).

    Article  Google Scholar 

  28. C. R. Neal, “Mantle sources and the highly variable role of continental lithosphere in basalt petrogenesis of the Kerguelen Plateau and Broken Ridge LIP: results from ODP Leg 183,” J. Petrol. 43 (7), 1177–1205 (2002).

    Article  Google Scholar 

  29. F. J. Nie, P. Hu, S. H. Jiang, Z. Q. Li, Y. Liu, and Y. Z. Zhou, “Type and temporal-spatial distribution of gold and antimony deposits (prospects) in southern Tibet, China,” Acta Geol. Sinica. 79 (3), 373–385 (2005).

    Google Scholar 

  30. Y. L. Niu, “Some basic concepts and problems on the petrogenesis of intra-plate ocean island basalts,” Scientia 55 (02), 103–114 (2010).

    Google Scholar 

  31. Y. L. Niu and M. J. O’Hara, “Origin of ocean island basalts: a new perspective from petrology, geochemistry and mineral physics considerations,” J. Geophys. Res. Solid Earth. 108 (B4), (2003).

  32. Y. L. Niu and M. J. O’Hara, “Mantle plumes are not from Ancient Oceanic Crust,” Oceanic Hotspots (Sprinnger, 2004), pp. 239–252

    Google Scholar 

  33. Y. L. Niu, M. Regelous, J. I. Wendt, R. Batizad, and M. J. O’Haraa, “Geochemistry of near EPR seamounts: Importance of source vs. process and the origin of enriched mantle component,” Earth Planet. Sci. Lett. 199, 327–345 (2002).

    Article  Google Scholar 

  34. J. A. Pearce and M. J. Norry, “Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks,” Contrib. Mineral. Petrol. 69 (1), 33–47 (1979).

    Article  Google Scholar 

  35. R. Peccerillo and S. R. Taylor, “Geochemistry of Eocene calc–alkaline volcanic rocks from the Kastamonu area, Northern Turkey,” Contrib. Mineral. Petrol. 58, 63–81 (1976).

    Article  Google Scholar 

  36. J. Prytulak and T. Elliott, “TiO2 enrichment in ocean island basalts,” Earth Planet. Sci. Lett. 263, 388–403 (2007).

    Article  Google Scholar 

  37. W. H. Qian, “On the formation and splitting of Gondwanaland department of geophysics,” J. Geomechanics 3 (1), 23–31 (1997).

    Google Scholar 

  38. J. S. Ren and L. W. Xiao, “Lifting the mysterious veil of the tectonics of the Qinghai–Tibet Plateau by 1 : 250 000 geological mapping,” Geol. Bull. China. 23 (01), 1–11 (2004).

    Google Scholar 

  39. D. B. Rowley, “Age of initiation of collision between India and Asia: a review of stratigraphic data,” Earth Planet. Sci. Lett. 145, 1–13 (1996).

    Article  Google Scholar 

  40. Y. J. Ru, “Composition and metasomatism of sub–continental lithospheric mantle,” Geol. Resour. 19 (4), 311–314 + 329 (2010).

  41. R. L. Rudnick and S. Gao, “The Composition of the Continental Crust,” in The Crust, Treatise on Geochemistry, Ed. by H. D. Holland, K. K. Turekian (Elsevier, Oxford, 2003), pp. 1–64.

    Google Scholar 

  42. W. F. Scott and R. Barbara, “Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots,” Nature. 525 (7567), 95–99 (2015).

    Article  Google Scholar 

  43. G. Y. Sun, X. M. Hu, and J. G. Wang, “Petrologic and provenance analysis of the Zongzhuo melange in Baisha area, Gyangzü, Southern Tibet,” Acta Geol. Sinica. 85 (08), 1343–1351 (2011).

    Google Scholar 

  44. S. S. Sun and W. F. McDonough, “Chemical and isotopic systematics in ocean basalt: Implication for mantle composition and processes.” Geol. Soc. London, Spec. Publ. 42 (1), 313–345 (1989).

    Article  Google Scholar 

  45. S. R. Taylor and S. McLeannan, The Continental Crust: its Composition and Evolution (Blackwell Scientific Publications, 1985).

    Google Scholar 

  46. R. N. Thompson, M. A. Morrison, G. L. Hendry, and S. J. Parry, “An assessment of the relative of crust and mantle in magma genesis: an elemental approach,” Philos. Trans. R. Soc. London 310, 549–590 (1984).

    Article  Google Scholar 

  47. K. Y. Tomlinson, D. J. Hughes, P. C. Thurston, and R. P. Hall, “Plume magmatism and crustal growth at 2.9 to 3.0 Ga in the Steep Rock and Lumby Lake area, western Superior Province,” Lithos 46 (1), 103–136 (1999).

    Article  Google Scholar 

  48. G. H. Wang, D. Y. Liang, W. C. Liu, W. T. Dong, and S. H. Wang, “Extensional movement and extending action in southern Tibet since Hercynian,” Geosci. 14 (2), 133–139 (2000).

    Google Scholar 

  49. Y. L. Wang, C. J. Zhang, and S. Z. Xiu, “Th/Hf–Ta/Hf identification of tectonic setting of basalts,” Acta Petrol. Sinica (3), 413–421 (2001).

  50. J. A. Winchester and P. A. Floyd, “Geochemical discrimination of different magma series and their differentiation products using immobile elements,” Chem. Geol. 20, 325–343 (1977).

    Article  Google Scholar 

  51. J. B. Wright, “Olivine nodules and related inclusions in trachyte from the Jos plateau, Nigeria,” Mineralogical Magazine. 37 (287), 370–374 (1969).

    Article  Google Scholar 

  52. H. R. Wu and H. S. Li, “Radiolaria from the olistostrome of the Zongzhuo Formation, Gyangze, southern Tibet,” Acta Palaeontol. Sinica 21 (1), 64–71 (1982).

    Google Scholar 

  53. Y. D. Xia, C. Zhu, Z. D. Zhao, Q. Wang, S. H. Yuan, Y. Chen, and X. X. Mo, “Whole-rock geochemistry and zircon Hf isotope of the OIB-type mafic rocks from the Comei Large Igneous Province in southeastern Tibet,” Acta Petrol. Sinica. 28 (05), 1588–1602 (2012).

    Google Scholar 

  54. B. J. Xie, S. Zhou, G. G. Xie, M. Z. Tian, and Z. L. Liao, “Zircon SHRIMP U–Pb data and regional contrasts of geochemical characteristics of Linzizong volcanic rocks from Konglong and Dinrenle region, middle Gangdese belt,” Acta Petrol. Sinica. 29 (11), 3803–3814 (2013).

    Google Scholar 

  55. G. Q. Xiong, X. S. Jiang, and H. Wu, “Preliminary study of the Late Cretaceous lithofacies palaeogeography in southern Tibet,” J. Palaeogeogr. 13 (4), 387–396 (2011).

    Google Scholar 

  56. Y. G. Xu, “Mantle plumes, large igneous provinces and their geologic consequences,” Earth Science Frontiers. 9 (04), 341–353 (2002).

    Google Scholar 

  57. Z. Q. Xu, J. S. Yang, W. C. Li, H. Q. Li, Z. H. Cai, Z. Yan, and C. Q. Ma, “Paleo-Tethys system and accretionary orogen in the Tibet Plateau,” Acta Petrol. Sinica. 29 (6), 1847–1860 (2013).

    Google Scholar 

  58. T. S. Yang, Y. M. Ma, W. W. Bian, J. J. Jin, S. H. Zhang, H. C. Wu, H. Y. Li, Z. Y. Yangand, and J. K. Ding, “Paleomagnetic results from the Early Cretaceous Lakang Formation lavas: Constraints on the paleolatitude of the Tethyan Himalaya and the India-Asia collision.” Earth Planet. Sci. Lett. 428, 120–133 (2015).

    Article  Google Scholar 

  59. F. Yu, Z. G. Li, Z. D. Zhao, G. G. Xie, G. C. Dong, S. Zhou, D. C. Zhu, and X. X. Mo, “Geochemistry and implication of the Linzizong volcanic succession in Cuomei area, central weatern Gangdese, Tibet,” Acta Petrologica Sinica. 26 (07), 2217–2225 (2010).

    Google Scholar 

  60. A. N. Zavaritsky, Ingeous Rock (Nauka, Beijing, 1958) [in Chinese].

    Google Scholar 

  61. J. J. Zhang, “Review on the extensional structures in the northern Himalaya and southern Tibet,” Geol. Bull. China 26 (6), 639–649 (2007).

    Google Scholar 

  62. S. M. Zhang and F. Z. Wang, “Basalts action on research geosphere deep-course and structural setting,” Advances in Earth Science. 17 (5), 685–692 (2002).

    Google Scholar 

  63. X. Y. Zhang, Y. S. Wei,C. S. Wang, Y. M. Shang, and W. X. Liang,“Geochemical characteristics of genesis of the basalts in Zhongba melange of southern Tibet,” Geology in China. 41 (3), 866–878 (2014).

    Google Scholar 

  64. Z. M. Zhang, J. L. Wang, X. Dong, G. C. Zhao, F. Yu, W. Wang, F. Liu, and G. S. Geng, “Petrology and geochronology of the charnockite from the southern Gangdese belt, Tibet: Evidence for the Andean-type orogen,” Acta Petrol. Sinica. 25 (7), 1707–1720 (2009).

    Google Scholar 

  65. H. M. Zhong, J. S. Tong, J. Xia, R. K. Lu, and J. Q. Qiu, “Characteristics and tectonic setting of volcanic rocks of the Sangxiu Formation in the southern part of Yamzho Yumco, southern Tibet,” Geol. Bull. China. 24 (1), 71–79 (2005).

    Google Scholar 

  66. Zhong, H. M. J. Xia, J. S. Tong, R. K. Lu, Y. H. Li, and S. F. Xu, “New results and major progress in regional geological survey of the Lhozag County Sheet,” Geol. Bull. China 23 (5–6), 451–457 (2004).

    Google Scholar 

  67. Y. Zhong, B. Xia, W. L. Liu, L. Z. Xia, Z. Y. Xia, and L. H. Wang, “LA-ICP-MS zircon U-Pb age and genesis of Longbucun granite in southern Gangdise Belt. Tibet,” Geol. Bull. China. 32 (9), 1362–1370 (2013).

    Google Scholar 

  68. B. X. Zhou, M. Hu, W. An, A. L. Ma, and W. Lai, “Trench deposition during the initial Indian–Asian collision: petrologic and provenance analysis of the Zongzhuo Formation, southeastern Tibet,” Acta Geol. Sinica 92 (1), 1–14 (2018).

    Google Scholar 

  69. D. C. Zhu, G. T. Pan, X. X. Mo, Z. L. Liao, X. S. Jiang and L. Q. Wang, “Permian to Cretaceous volcanic activities in the central segment of the Tethyan Himalayas (I): distribution characteristics and significance,” Geol. Bull. China. 23 (7), 645–654 (2004).

    Google Scholar 

  70. D. C. Zhu, G. T. Pan, X. X. Mo, Z. L. Liao, X. S. Jiang, L. Q. Wang, and Z. D. Zhao, “Geochemistry and petrogenesis of the Sangxiu Formation genesis basalts in the central segment of Tethyan Himalaya,” Geochimica 34 (01), 7–19 (2005).

    Google Scholar 

  71. D. C. Zhu, G. T. Pan, X. X. Mo, L. Q. Wang, Z. D. Zhao, Z. L. Liao, Q. R. Geng, and G. C. Dong, “Identification for the Mesozoic OIB-type basalts in Central Qinghai–Tibetan Plateau: geochronology, geochemistry and their tectonic setting,” Acta Geol. Sinica. 80 (09), 1312–1328 (2006).

    Google Scholar 

  72. D. C. Zhu, X. X. Mo, L. Q. Wang, Z. D. Zhao and Z. L. Liao, “Hotspot–ridge interaction for the evolution of Neo-Tethys: insights from the Late Jurassic Early Cretaceous magmatism in southern Tibet.” Acta Petrol. Sinica. 24 (2), 225–237 (2008).

    Google Scholar 

  73. D. C. Zhu, G. T. Pan, L. Q. Wang, X. X. Mo, Z. D. Zhao, C. Y. Zhou, Z. L. Liao, G. C. Dong, and S. H. Yuan, “Tempo–spatial variations of Mesozoic magmatic rocks in the Gangdise belt, Tibet, China, with a discussion of geodynamic setting-related issues,” Geol. Bull. China, no. 9, 1535–1550 (2008).

  74. D. C. Zhu, X. X. Mo, Z. D. Zhao, Y. L. Niu, G. T. Pan, L. Q. Wang and Z. L. Liao, “Permian and Early Cretaceous tectonomagmatism in southern Tibet and Tethyan evolution: new perspective.” Earth Science Frontiers. 16 (2), 001–020 (2009).

  75. D. C. Zhu, Y. Xia, B. B. Qiu, Q. Wang and Z. D. Zhao, “Why do we need to propose the Early Cretaceous Comei large igneous province in southeastern Tibet?” Acta Petrol. Sinica. 29(11), 3659–3670 (2013).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

My sincere thanks extend to the members of the Rongbu project for their help in the field and their constructive comments and suggestions.

Funding

1:50 000 regional geological survey projects of the Rongbu area were mainly undertaken at Chengdu University of Technology. The Level 2 project uses the Gangdese-Himalayan copper-resource base survey items (project code: DD20160015-06) and is supported by Central funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangang Xie or Feng Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiangang Xie, Ding, F., Sun, Y. et al. Geochemical Characteristics and Geological Significance of the Late Cretaceous Alkaline Basalts in the Zongzhuo Formation Located in the Mid-eastern Region of the Tethys Himalaya. Geochem. Int. 59, 991–1007 (2021). https://doi.org/10.1134/S0016702921090081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702921090081

Keywords:

Navigation