Skip to main content
Log in

Implementation of Artificial Neural Networks for Forecasting the HVOF Spray Process and HVOF Sprayed Coatings

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

In the high velocity oxygen fuel (HVOF) spray process, coating properties are sensitive to the characteristics of in-flight particles, which are mainly determined by process parameters. Obtaining a comprehensive multi-physical model or analysis of the HVOF process remains challenging because of the complex chemical and thermodynamic reactions that occur during the deposition procedure. This study proposes to develop a robust methodology via the artificial neural networks (ANN) to solve this problem for the HVOF sprayed coatings under different operating parameters. Two ANN models were developed and implemented to predict coating’s performances (microhardness, porosity and wear rate) and to analyze the influence of operating parameters (stand-off distance, oxygen flow rate, and fuel flow rate) while considering the intermediate variables (temperature and velocity of in-flight particles). A detailed procedure for creating and optimizing these two ANN models is presented in this work, which encodes the implicitly physical phenomena governing the HVOF process. Results show that the developed implicit models can satisfy the prediction requirements and clarify the interrelationships between the spraying conditions, behaviors of in-flight particles, and the final coating performances, resulting in providing better control of the HVOF sprayed coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. P. Fauchais, A. Vardelle and B. Dussoubs, Quo Vadis Thermal Spraying?, J. Thermal Spray Technol., 2001, 10(1), p 44–66.

    Article  CAS  Google Scholar 

  2. J.A. Browning, Highly Concentrated Supersonic Liquified Material Flame Spray Method and Apparatus, ed., Google Patents, 1983.

  3. J.A. Gan and C.C. Berndt, Thermal Spray Forming of Titanium and Its Alloys, Elsevier, Titanium Powder Metallurgyed., 2015, p 425–446.

    Google Scholar 

  4. M. Oksa, E. Turunen, T. Suhonen, T. Varis and S.-P. Hannula, Optimization and Characterization of High Velocity Oxy-fuel Sprayed Coatings: Techniques, Mater. Appl. Coat., 2011, 1(1), p 17–52.

    Google Scholar 

  5. L. Qiao, Y. Wu, S. Hong, J. Cheng, Z.J.S. Wei and C. Technology, Influence of the High-Velocity Oxygen-Fuel Spray Parameters on the Porosity and Corrosion Resistance of Iron-Based Amorphous, Coatings, 2019, 366, p 296–302.

    Article  CAS  Google Scholar 

  6. Y. Qin, Y. Wu, J. Zhang, S. Hong, W. Guo, L. Chen and H. Liu, Optimization of the HOVF Spray Parameters by Taguchi Method for High Corrosion-Resistant Fe-Based Coatings, J Mater Eng Perform, 2015, 24(7), p 2637–2644. https://doi.org/10.1007/s11665-015-1536-8.

  7. A.S. Praveen, J. Sarangan, S. Suresh and B.J.C.I. Channabasappa, Optimization and Erosion Wear Response of NiCrSiB/WC–Co HVOF Coating Using Taguchi Method, Ceram. Int., 2016, 42(1), p 1094–1104.

    Article  CAS  Google Scholar 

  8. S. Nourouzi, M.J. Azizpour, H.J.M. Salimijazi and M. , Processes, Parametric Study of Residual Stresses in HVOF Thermally Sprayed WC–12Co Coatings, Phys. Rev., 2014, 29(9), p 1117–1125.

    CAS  Google Scholar 

  9. S. Hasan and J. J. J. o.t.s.t. Stokes, Design of Experiment Analysis of the Sulzer Metco DJ High Velocity Oxy-Fuel Coating of Hydroxyapatite for Orthopedic Applications, J. Therm Spray Technol., 2011, 20(1–2), p 186–194.

    Article  CAS  Google Scholar 

  10. K. Balan, S. Manimaran and A.J.J.P.E. Rajan, Prediction Of Interactions Between Various Input Process Parameters Involved In Detonation Gun Coating Technique Through Response Surface Methodology, Proc. Eng., 2014, 97, p 1399–1405.

    Article  CAS  Google Scholar 

  11. C. Thiruvikraman, V. Balasubramanian and K.J.J.o.T.S.T. Sridhar, Optimizing HVOF Spray Parameters to Maximize Bonding Strength of WC-CrC-Ni Coatings on AISI 304L Stainless Steel, J. Thermal Spray Technol. , 2014, 23(5), p 860–875.

    Article  CAS  Google Scholar 

  12. M. Mahrukh, A. Kumar, S.J.S. Gu and C, Technology, Effects of Angular Injection, and Effervescent Atomization on High-Velocity Suspension Flame Spray Process, Surf. Coat. Technol., 2016, 302, p 368–382.

    Article  CAS  Google Scholar 

  13. V. Sobolev, J. Guilemany and J. J. J. o.T.S.T. Calero, Prediction of Powder Particle Behavior During High-Velocity Oxyfuel Spraying, J. Therm. Spray, 1995, 4(3), p 287–296.

    Article  CAS  Google Scholar 

  14. E. Dongmo, R. Gadow, A. Killinger and M.J.J.o.t.s.t. Wenzelburger, Modeling of Combustion as Well as Heat, Mass, and Momentum Transfer During Thermal Spraying by HVOF and HVSFS, J. Thermal Spray Technol., 2009, 18(5–6), p 896.

    Article  CAS  Google Scholar 

  15. E. Dongmo, M. Wenzelburger and R. Gadow, Analysis and Optimization of the HVOF Process by Combined Experimental and Numerical Approaches, Surf. Coat. Technol., 2008, 202(18), p 4470–4478.

    Article  CAS  Google Scholar 

  16. M. Cherigui, S. Guessasma, N. Fenineche and C. Coddet, FeNb Magnetic Properties Correlated to Microstructure Features, Mater. Sci. Eng., B, 2005, 116(1), p 40–46.

    Article  Google Scholar 

  17. M. Cherigui, S. Guessasma, N. Fenineche and C. Coddet, Neural Computation to Correlate HVOF Thermal Spraying Parameters with the Magnetic Properties of FeNb Alloy Deposits, Mater. Chem. Phys., 2005, 93(1), p 181–186.

    Article  CAS  Google Scholar 

  18. R. Hamzaoui, M. Cherigui, S. Guessasma, O. ElKedim and N. Fenineche, Artificial Neural Network Methodology: Application to Predict Magnetic Properties of Nanocrystalline Alloys, Mater. Sci. Eng., B, 2009, 163(1), p 17–21.

    Article  CAS  Google Scholar 

  19. G. Zhang, A.-F. Kanta, W.-Y. Li, H. Liao and C.J.M. Coddet, Design, Characterizations of AMT-200 HVOF NiCrAlY Coatings, Mater. Design, 2009, 30(3), p 622–627.

    Article  CAS  Google Scholar 

  20. S. Kamnis, K. Malamousi, A. Marrs, B. Allcock and K. Delibasis, Aeroacoustics and Artificial Neural Network Modeling of Airborne Acoustic Emissions During High Kinetic Energy Thermal Spraying, J. Therm. Spray Technol., 2019, 28(5), p 946–962.

    Article  CAS  Google Scholar 

  21. M.A.R. Mojena, A.S. Roca, R.S. Zamora, M.S. Orozco, H.C. Fals and C.R.C.J.W. Lima, Neural Network Analysis For Erosive Wear of Hard Coatings Deposited by Thermal Spray: Influence of Microstructure and Mechanical Properties, Wear, 2017, 376, p 557–565.

    Article  Google Scholar 

  22. M. Liu, Z. Yu, Y. Zhang, H. Wu, H. Liao and S. Deng, Prediction and Analysis of High Velocity Oxy Fuel (HVOF) Sprayed Coating Using Artificial Neural Network, Surf. Coat. Technol., 2019, 378(124988). https://doi.org/10.1016/j.surfcoat.2019.124988.

  23. G.-C. Ji, C.-J. Li, Y.-Y. Wang, W.-Y.J.S. Li and C. Technology, Microstructural Characterization and Abrasive Wear Performance of HVOF Sprayed Cr3C2–NiCr Coating, Surf. Coat. Technol., 2006, 200(24), p 6749–6757.

    Article  CAS  Google Scholar 

  24. W. Zhou, K. Zhou, Y. Li, C. Deng and K.J.A.S.S. Zeng, High Temperature Wear Performance of HVOF-Sprayed Cr3C2-WC-NiCoCrMo and Cr3C2-NiCr Hardmetal Coatings, Appl. Surf. Sci., 2017, 416, p 33–44.

    Article  CAS  Google Scholar 

  25. V. Matikainen, G. Bolelli, H. Koivuluoto, P. Sassatelli, L. Lusvarghi and P.J.W. Vuoristo, Sliding Wear Behaviour of HVOF and HVAF Sprayed Cr3C2-Based Coatings, Wear, 2017, 388, p 57–71.

    Article  Google Scholar 

  26. L. Janka, L.-M. Berger, J. Norpoth, R. Trache, S. Thiele, C. Tomastik, V. Matikainen, P.J.S. Vuoristo and C. Technology, Improving the High Temperature Abrasion Resistance of Thermally Sprayed Cr3C2-NiCr Coatings by WC Addition, Surf. Coat. Technol., 2018, 337, p 296–305.

    Article  CAS  Google Scholar 

  27. H. Zhang, X. Dong and S.J.A.i.M.E. Chen, Solid Particle Erosion-Wear Behaviour of Cr3C2–NiCr coating On Ni-Based Superalloy, Adv. Mech. Eng., 2017, 9(3), p 1687814017694580.

    CAS  Google Scholar 

  28. D. Zissis, E.K. Xidias and D.J.A.S.C. Lekkas, A Cloud Based Architecture Capable of Perceiving and Predicting Multiple Vessel Behaviour, Appl. Soft Comput., 2015, 35, p 652–661.

    Article  Google Scholar 

  29. I. The MathWorks, trainlm, in, https://uk.mathworks.com/help/deeplearning/ref/trainlm.html, 1994–2020.

  30. L.G. Valiant, A theory of the learnable, Proceedings of the sixteenth annual ACM symposium on Theory of computing, 1984, ACM, p 436-445. https://doi.org/10.1145/800057.808710.

  31. G. Brightwell, C. Kenyon and H. Paugam-Moisy, Multilayer Neural Networks: One or Two Hidden Layers?, Adv. Neural Inf. Process. Syst., 1997, 1997, p 148–154.

    Google Scholar 

  32. S. Guessasma, Z. Salhi, G. Montavon, P. Gougeon, C.J.M.S. Coddet and E. B, Artificial Intelligence Implementation in the APS Process Diagnostic, Mater. Sci. Eng. B, 2004, 110(3), p 285–295.

    Article  Google Scholar 

Download references

Acknowledgments

The authors, Meimei LIU and Hongjian WU, would like to thank the support from the China Scholarship Council (Grant No. 201604490072 and Grant No. 201701810152).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sihao Deng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Yu, Z., Wu, H. et al. Implementation of Artificial Neural Networks for Forecasting the HVOF Spray Process and HVOF Sprayed Coatings. J Therm Spray Tech 30, 1329–1343 (2021). https://doi.org/10.1007/s11666-021-01213-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-021-01213-y

Keywords

Navigation