Skip to main content

Advertisement

Log in

Spatially resolved estimates of glacial retreat and lake changes from Gepang Gath Glacier, Chandra Basin, Western Himalaya, India

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

Glacial lakes dynamics has a concomitant impact over glacial retreat, mass change and glacial lake outburst floods (GLOFs) events. Recent warming led increase in glacial retreat at High-Mountain Asia (HMA) which has accelerated the formation of moraine-dammed glacial lakes; however, their relative potential for catastrophic events i.e., GLOF, are still a matter of detailed research. In the present study, the changes are assessed at the terminus position, glacier area and associated proglacial lake of Gepang Gath Glacier (GGGL), Chandra basin, western Himalaya, India, using multi-years satellite dataset of Landsat series (TM, ETM+ and OLI, 1989–2017). The results of glacial volume estimations using volume-area scaling method suggests ∼0.28 km3 of ice volume loss between 1989 and 2017. The glacier has retreated ∼846 m with an average rate of 30 m a−1 and lost ∼0.73 ± 0.05 km2 frontal area from 1989 to 2017. However, the glacier has not shown uniform retreat rate. Between 1989 and 2000 glacier retreat about ∼14 m a−1 and the rate was increased gradually to ∼38 m a−1 (2000–2009) and ∼50 m a−1 (2015–2017). The calculated proglacial lake area has expanded ∼44 % and estimated equilibrium line altitude (ELA) rise was 54 ± 12 m, during the study period. The study explains that the continuous expansion of proglacial lake and ice loss can be dangerous to downstream region. It is concluded by underlining the importance of glacier-lake relationships to predict the glacial lake behavior and understand the probability of lake catastrophic events i.e., GLOF and associated hazards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bahr, D.B. (1997) Global distributions of glacier properties: a stochastic scaling paradigm. Water Resource Res., v.33(7), pp1669–1679. DOI: https://doi.org/10.1029/97WR00824

    Article  Google Scholar 

  • Bajracharya, S.R. and Mool, P. (2009) Glaciers, glacial lakes and glacial lake outburst floods in the Mount Everest region, Nepal. Ann. Glaciol., v.50, pp.81–86. DOI: https://doi.org/10.3189/172756410790595895

    Article  Google Scholar 

  • Basnett, S., Kulkarni, A.V., Bolch, T. (2013) The influence of debris cover and glacial lakes on the recession of glaciers in Sikkim Himalaya, India. Jour. Glaciol., v.59(218), pp.1035–1046. DOI: https://doi.org/10.3189/2013jogl2j184

    Article  Google Scholar 

  • Benn, D.I., Owen, L.A. (1998) The role of Indian summer monsoon and the mid-latitude westerlies in Himalayan glaciation: review and speculative discussion. Jour. Geol. Soc. London, v.155, pp.353–363. DOI: https://doi.org/10.1144/gsjgs.155.2.0353

    Article  Google Scholar 

  • Benn, D. I. and Lehmkuhl, F. (2000) Mass balance and equilibrium-line altitudes of glaciers in high mountain environments. Quaternary Internat., v.65, pp. 15–29.

    Article  Google Scholar 

  • Benn, D.I., Owen, L.A., Osmaston, H.A., Seltzer, G.O., Porter, S. C. and Mark, B. (2005) Reconstruction of equilibrium-line altitudes for tropical and subtropical glaciers. Quaternary Internat., v. 138, pp.8–21.

    Article  Google Scholar 

  • Berthier, E., Arnaud, Y., Kumar, R., Ahmad, S., Wagnon, R, Chevallier, R (2007) Remote sensing estimates of glacier mass balances in the Himachal Pradesh (Western Himalaya, India). Remote Sensing Environ., v. 108(3), pp.327–338. DOI: https://doi.org/10.1016/j.rse.2006.11.017

    Article  Google Scholar 

  • Bhambri, R., Misra, A., Kumar, A., Gupta, A.K., Verma, A., Tiwari, S.K. (2018) Glacier Lake inventory of Himachal Pradesh. Himalayan Geol., v.39(1), pp. 1–32.

    Google Scholar 

  • Bhushan, S., Syed, T.H., Arendt, A.A., Kulkarni, A.V., Sinha, D. (2018) Assessing controls on mass budget and surface velocity variations of glaciers in Western Himalaya. Sci. Rep., v.8(1), pp.8885.

    Article  Google Scholar 

  • Bolch, T., Kamp, U. (2006) Glacier mapping in high mountains using DEMs, Landsat and ASTER data. Grazer Schriften der Geographie und Raumforschung, v.41, pp.37–48. DOI: https://doi.org/10.5167/uzh-137251; DOI: https://doi.org/10.1126/science.1215828

    Google Scholar 

  • Chand, P. and Sharma, M.C. (2015) Glacier changes in the Ravi basin, northwestern Himalaya (India) during the last four decades (1971-2010/13). Global and Planetary Change, v.135, pp.133–147. DOI: https://doi.org/10.1016/j.gloplacha.2015.10.013

    Article  Google Scholar 

  • Chen, J. and Ohmura, A. (1990) Estimation of alpine glacier water resources and their climate since the 1870s, In: Lang, H. and Musy, A. (Eds.), Hydrology in Mountainous Regions, I-Hydrological Measurements; the water cycle, Proceedings of two Lausanne Symposia, August 1990. AHS Publ., v.193, pp.127–135.

  • Clark, D.H., Clark, M.M. and Gillespie, A.R. (1994) Debris-covered glaciers in the Sierra Nevada, California, and their implications for snowline reconstructions. Quaternary Res., v. 4, pp.139–153.

    Article  Google Scholar 

  • Cogley JG (2011) Present and future states of Himalaya and Karakoram glaciers. Ann. Glaciol., v.52(59), pp.69–73. DOI: https://doi.org/10.3189/172756411799096277

    Article  Google Scholar 

  • Das, S., Kar, N.S., Bandyopadhyay, S. (2015) Glacial lake outburst flood at Kedarnath, Indian Himalaya: a study using digital elevation model and satellite images. Nat. Haz., v.77, pp.769–786. DOI: https://doi.org/10.1007/s11069-015-1629-6

    Article  Google Scholar 

  • DeBeer CM, Sharp MJ (2009) Topographical influences on recent changes of very small glaciers in the Monashee Mountains, British Columbia, Canada. Jour. Glaciol., v.55(192), pp.691–700. DOI: https://doi.org/10.3189/002214309789470851

    Article  Google Scholar 

  • Derbyshire E, Owen LA (1997) Quaternary glacial history of the Karakoram Mountains and northwest Himalayas: A review. Quaternary. Internat., v.38–39, pp.85–102. DOI: https://doi.org/10.1016/S1040-6182(96)00015-8

    Article  Google Scholar 

  • Dobhal, D.P., Gupta, A.K., Mehta, M., Khandelwal, D.D. (2013) Kedarnath disaster: facts and plausible causes. Curr. Sci., v.105(2), pp.171–174.

    Google Scholar 

  • Emmer, A., Cochachin, A. (2013) The causes and mechanisms of moraine-dammed lake failures in the Cordillera Blanca, North American Cordillera, and Himalayas. AUC Geographica, v.48(2), pp.5–15.

    Article  Google Scholar 

  • Evans, S.G. (1986) Landslide damming in the Cordillera of Western Canada. Seattle, Washington, pp.111–130.

  • Frey, H., Machguth, H., Huss, M., Huggel, C., Bajracharya, S., Bolch, T., Stoffel, M. (2014) Estimating the volume of glaciers in the Himalayan-Karakoram region using different methods. The Cryosphere, v.8(6), pp.2313–2333. DOI: https://doi.org/10.5194/tc-8-2313-2014

    Article  Google Scholar 

  • Gardelle, J., Arnaud, Y., Berthier, E. (2011) Contrasted evolution of glacial lakes along the Hindu Kush Himalaya mountain range between 1990 and 2009. Global and Planetary Change, v.75(1–2), pp.47–55. DOI: https://doi.org/10.1016/j.gloplacha.2010.10.003

    Article  Google Scholar 

  • Garg, P.K., Shukla, A., Tiwari, R.K., Jasrotia, A.S. (2017) Assessing the status of glaciers in part of the Chandra basin, Himachal Himalaya: A multiparametric approach. Geomorphology, v.284, pp.99–114. DOI:https://doi.org/10.1016/j.geomorph.2016.10.022

    Article  Google Scholar 

  • Granshaw, F.D., Fountain, A.G. (2006) Glacier change (1958–1998) in the north Cascades national park complex, Washington, USA. Jour. Glaciol., v.52(177), pp.251–256. DOI: https://doi.org/10.3189/172756506781828782

    Article  Google Scholar 

  • Guha-Spair, D., Below, R., Hoyois, P. (2014) EM-DAT: International disaster database. Universite Catholique de Louvain, Brussels, Belgium. https://www.emdat.be. Accessed 20 Nov 2017.

  • Haeberli, W., Zemp, M., Hoelzle, M., Frauenfelder, R., Kaab, A., (2005) Fluctuations of Glaciers 1995–2000, vol. 8. Paris:UNESCO. Available at: http://www.geo.uzh.ch/microsite/wgms/fog/fog8.pdf.

  • Huggel, C., Kääb, A., Haeberli, W., Teysseire, P., Paul, F. (2002) Remote sensing based assessment of hazards from glacier lake outbursts: a case study in the Swiss Alps. Canadian Get. Jour., v.39(2), pp.316–330.

    Google Scholar 

  • ICIMOD (2011) Glacial lakes and glacial lake outburst floods in Nepal. ICIMOD, Patan. ISBN 978-92-9115-193-6 (http://lib.icimod.org/record/9419/files/icimod the status of glaciers in the hindu kush-himalayan region [1].pdf).

  • Jain, S.K., Mir, R.A. (2017) Glacier and glacial lake classification for change detection studies using satellite data: a case study from Baspa basin, western Himalaya. Geocarto Internat., pp.1-52. DOI:https://doi.org/10.1080/10106049.2017.1404145.

  • Kaser, G., Cogley, J.G., Dyurgerov, M.B., Meier, M.F., Ohmura, A., (2006) Mass balance of glaciers and ice caps: consensus estimates for 1961–2004. Geophys. Res. Lett., v.33, pp.1–5.

    Article  Google Scholar 

  • Kaushik, S., Rafiq, M., Joshi, P. K., and Singh, T. (2020) Examining the glacial lake dynamics in a warming climate and GLOF modelling in parts of Chandra basin, Himachal Pradesh, India. Sci. Total Environ., v.714, pp.136455.

    Article  Google Scholar 

  • Kumar, V., Mehta, M., Mishra, A., Trivedi, A. (2017) Temporal fluctuations and frontal area change of Bangni and Dunagiri glaciers from 1962 to 2013, Dhauliganga Basin, central Himalaya, India. Geomorphology, v.284, pp.88–98. DOI: https://doi.org/10.1016/j.geomorph.2016.12.012

    Article  Google Scholar 

  • Kumar, D., Kumar, A.S., Singh, D.S. (2020) Spatio-temporal fluctuations over Chorabari glacier, Garhwal Himalaya, India between 1976 and 2017. Quaternary Internat., DOI: https://doi.org/10.1016/j.quaint.2020.04.037

  • Kumar, V., Shukla, T., Mishra, A., Kumar, A. and Mehta, M. (2020a). Chronology and climate sensitivity of the post LGM glaciation in, v.49, pp.594–614. DOI: https://doi.org/10.1111/bor.12440. ISSN 0300-9483.

    Google Scholar 

  • Kumar, V., Shukla, T., Mehta, M., Dobhal, D. P., Bisht, M. P. S. and Nautiyal, S. (2020b) Glacier changes and associated climate drivers for the last three decades, Nanda Devi region, Central Himalaya, India. Quaternary Internat., v. 275–276, pp. 213–226

    Google Scholar 

  • Li, J., Sheng, Y. (2012) An automated scheme for glacial lake dynamics mapping using Landsat imagery and digital elevation models: A case study in the Himalayas. Internat. Jour. Remote Sensing, v.33(16), pp.5194–5213. DOI: https://doi.org/10.1080/01431161.2012.657370

    Article  Google Scholar 

  • Maurer, J.M., Rupper, S.B., Schaefer, J.M. (2016) Quantifying ice loss in the eastern Himalayas since 1974 using declassified spy satellite imagery. The Cryosphere, v.10(5), pp.2203–2215. DOI:https://doi.org/10.5194/tc-10-2203-2016

    Article  Google Scholar 

  • Mehta, M., Majeed, Z., Dobhal, D.P. and Srivastava, P. (2012) Geomorphological evidences of post-LGM glacial advancements in the Himalaya: a study from Chorabari Glacier, Garhwal Himalaya, India. Jour. Earth System Sci., v.121, pp.149–163.

    Article  Google Scholar 

  • Mehta, M., Dobhal, D.P., Bhanu, P., Majeed, Z., Gupta, A.K. and Srivastava, P. (2014) Late Quaternary glacial advances in the Tons River Valley, Garhwal Himalaya, India and regional synchronicity. The Holocene, v.24, pp.1336–1350.

    Article  Google Scholar 

  • Mehta, M., Shukla, T., Bhambri, R., Gupta, A.K., Dobhal, D.P. (2017) Terrain changes, caused by the 15–17 June 2013 heavy rainfall in the Garhwal Himalaya, India: A case study of Alaknanda and Mandakini basins. Geomorphology v.284, pp.53–71. DOI: https://doi.org/10.1016/j.geomorph.2016.11.001

    Article  Google Scholar 

  • Mir, R.A., Majeed, Z. (2018) Frontal recession of Parkachik Glacier between 1971–2015, Zanskar Himalaya using remote sensing and field data. Geocarto Internat., v.33(2). DOI:https://doi.org/10.1080/10106049.2016.1232439.

    Google Scholar 

  • Mir, R.A., Jain, S.K., Lohani, A.K., Safar, A.K. (2018) Glacier recession and glacial lake outburst flood studies in Zanskar basin, western Himalaya. Jour. Hydrol., v.564, pp.376–396. DOI: https://doi.org/10.1016/j.jhydrol.2018.05.031

    Article  Google Scholar 

  • Pandey, P., Ali, S.N., Ramanathan, A.L., Ray, C.P.K. (2016) Regional representation of glaciers in Chandra Basin region, western Himalaya, India. Geosci. Front. DOI:https://doi.org/10.1016/j/gsf.2016.06.006.

  • Paul, F., Huggel, C., Kääb, A. (2004) Mapping of debris-covered glaciers using multispectral and DEM classification techniques. Remote Sens. Environ., v.89(4), pp.510–518. DOI: https://doi.org/10.1016/j.rse.2003.11.007

    Article  Google Scholar 

  • Patel, L.K., Sharma, P., Laluraj, C.M., Thamban, M., Singh, A., Ravindra, R. (2017) A geospatial analysis of SamudraTapu and Gepang Gath glacial lakes in the Chandra Basin, Western Himalaya. Nat. Hazards, v.86, pp.1275–1290. DOI: https://doi.org/10.1007/s11069-017-2743-4

    Article  Google Scholar 

  • Quincey, D.J., Glasser, N.F. (2009) Morphological and ice-dynamical changes on the Tasman Glacier, New Zealand, 1990–2007. Glob Planet Change, v.68(3), pp.185–197.

    Article  Google Scholar 

  • Racoviteanu, A.E., Arnaud, Y., Williams, M.W., Ordonez, J. (2008) Decadal changes in glacier parameters in the Cordillera Blanca, Peru, derived from remote sensing. Jour. Glaciol., v.54(186), pp.499–510. DOI: https://doi.org/10.3189/002214308785836922

    Article  Google Scholar 

  • Ramage, J.M., Smith, J.A., Rodbell, D.T. and Seltzer, G.O. (2005) Comparing reconstructed Pleistocene equilibrium-line altitudes in the tropical Andes of central Peru. Jour. Quaternary Sci., v.20, pp.777–788.

    Article  Google Scholar 

  • Rao, K.H.V., Rao, V.V., Dadhwal, V.K., Diwakar, P.G. (2014) Kedarnath flash floods: a hydrological and hydraulic simulation study. Curr. Sci., v. 106(4), pp.598–603.

    Google Scholar 

  • Rashid, I. and Majeed, U. (2018) Recent recession and potential future lake formation on DrandDrung glacier, Zanskar Himalaya, as assessed with earth observation data. Environ. Earth. Sci., v. 77, pp.429. DOI: https://doi.org/10.1007/s12665-018-7601-5.

    Article  Google Scholar 

  • Rathore, B.P., Singh, S.K., Brahmbhatt, R., Bahuguna, I.M., Rajawat, A.S. (2015) Monitoring of moraine-dammed lakes: a remote sensing-based study in the Western Himalaya. Curr. Sci., (00113891), v.109(10).

    Google Scholar 

  • Raup, B., Kääb, A., Kargel, J.S., Bishop, M.P., Hamilton, G., Lee, E., Beedle, M. (2007) Remote sensing and GIS technology in the Global Land Ice Measurements from Space (GLIMS) project. Computers & Geosciences, v.33(1), pp.104–125. DOI: https://doi.org/10.1016/j.cageo.2006.05.015

    Article  Google Scholar 

  • Robson, B.A., Nuth, C., Dahl, S.O., Hölbling, D., Strozzi, T, Nielsen, P.R. (2015) Automated classification of debris-covered glaciers combining optical, SAR and topographic data in an object-based environment. Remote Sensing Environ., v. 170, pp.372–387. DOI: https://doi.org/10.1016/j.rse.2015.10.001

    Article  Google Scholar 

  • Sahu, R., Gupta, R. D. (2019) Spatiotemporal variation in surface velocity in Chandra basin glacier between 1999 and 2017 using Landsat-7 and Landsat-8 imagery. Geocarto Internat., pp.1–21.

  • Sakai, A., Saito, M., Nishimura, K., Yamada, T., Izuka, Y., Harada, K., Kobayashi, S., Fujita, K., Gurung, C.B. (2007) Topographical survey of end moraine and dead ice area at Imja Glacial Lake in 2001 and 2002. Bull. Glaciol. Res., v.24, pp.29–36.

    Google Scholar 

  • Sarikaya, M.A., Bishop, M.P., Shroder, J.F., Olsenholler, J.A. (2012) Space-based observations of Eastern Hindu Kush glaciers between 1976 and 2007, Afghanistan and Pakistan. Remote Sensing Lett., v.3(1), pp.77–84. DOI: https://doi.org/10.1080/01431161.2010.536181

    Article  Google Scholar 

  • Sharma, P., Ramanathan, A.L., Ptaakkal, J. (2013) Study of solute sources and wvolution of hydrogeochemical processes of the Chhota Shigri Glacier meltwaters, Himachal Himalaya, India. Hydr. Sci. Jour. v.58, pp.1128–1143. DOI: https://doi.org/10.1080/02626667.2013.802092

    Article  Google Scholar 

  • Shrestha, A.B., Eriksson, M., Mool, P., Ghimire, P., Mishra, B., Khanal, N.R. (2010) Glacial lake outburst flood risk assessment of Sun Koshi basin, Nepal. Geomatics, Natural Hazards and Risk, v.1(2), pp.157–169. DOI: https://doi.org/10.1080/19475701003668968

    Article  Google Scholar 

  • Shukla, A., Qadir, J. (2016) Differential response of glaciers with varying debris cover extent: evidence from changing glacier parameters. Internat. Jour. Remote Sensing, v.37(11), pp.2453–2479. DOI: https://doi.org/10.1080/01431161.2016.1176272

    Article  Google Scholar 

  • Shukla, T., Mehta, M., Jaiswal, M.K., Srivastava, P., Dobhal, D.P., Nainwal, H.C., Singh, A.K. (2018) Late Quaternary glaciation history of monsoon-dominated Dingad basin, central Himalaya, India. Quaternary Sci. Rev., v.181, pp.43–64. DOI: https://doi.org/10.1016/j.quascirev.2017.11.032

    Article  Google Scholar 

  • Shukla, A., Garg, P.K., Srivastava, S. (2018) Evolution of glacial and high-altitude lakes in the Sikkim, Eastern Himalaya Over the past four Decades (1975–2017). Frontiers in Environ. Sci., DOI: https://doi.org/10.3389/fenvs.2018.00081

  • Singh, D.S., Mishra, A. (2001) Gangotri Glacier characteristics, retreat and processes of sedimentation in the Bhagirathi valley. Geol. Surv. India Spec. Publ., v.65(3), pp.17–20.

    Google Scholar 

  • Singh, D.S., Mishra, A. (2002) Role of tributary glaciers on landscape modification in the Gangotri Glacier area, Garhwal Himalaya, India. Curr. Sci., v.82(5), pp.567–571.

    Google Scholar 

  • Singh, D.S. (2014) Surface processes during flash floods in the glaciated terrain of Kedarnath, Garhwal Himalaya and their role in the modification of landforms. Curr. Sci., v.106(4), pp.594–597.

    Google Scholar 

  • Singh, D.S., Tangri, A.K., Kumar, D., Dubey, C.A., and Bali, R. (2017) Pattern of retreat and related morphological zones of Gangotri Glacier, Garhwal Himalaya, India. Quaternary Internat., v.444, pp.172–181.

    Article  Google Scholar 

  • Song, C., Sheng, Y., Wang, J., Ke, L., Madson, A., and Nie, Y. (2017) Heterogeneous glacial lake changes and links of lake expansions to the rapid thinning of adjacent glacier termini in the Himalayas. Geomorphology, v.280, pp.30–38.

    Article  Google Scholar 

  • Taschner, S. and Ranzvi, R. (2002) Comparing the opportunities of Landsat-TM and Aster data for monitoring a debris covered glacier in the Italian Alps within the GLIMS project. Geoscience and Remote Sensing Symposium. IGARSS’02. 2002 IEEE International vol.2, pp.1044–1046. DOI: https://doi.org/10.1109/IGARSS.2002.1025770

  • Worni, R., Huggel, C., Stoffel, M. (2013) Glacial lakes in the Indian Himalayas—From an area-wide glacial lake inventory to on-site and modeling based risk assessment of critical glacial lakes. Sci. Total Environ., v.468, pp.S71–S84. DOI: https://doi.org/10.1016/j.scitotenv.2012.11.043

    Article  Google Scholar 

  • Yan, S., Li, Y, Li, Z., Liu, G., Ruan, Z., Li, Z. (2018) An insight into the surface velocity of Inylchek glacier and its effect on Lake Merzbacher during 2006–2016 with Landsat time-series imagery. Environ. Earth Sci., v.77(773), pp.1–10.

    Google Scholar 

Download references

Acknowledgement

The authors are grateful to the Director, Wadia Institute of Himalayan Geology (WIHG), Dehradun for providing the necessary facilities to carry out this work. Thoughtful reviews, critical, constructive comments and valuable suggestions on an earlier version of the manuscript by editor and anonymous reviewers helped to improve the manuscript markedly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinit Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Mehta, M. & Shukla, T. Spatially resolved estimates of glacial retreat and lake changes from Gepang Gath Glacier, Chandra Basin, Western Himalaya, India. J Geol Soc India 97, 520–526 (2021). https://doi.org/10.1007/s12594-021-1718-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-021-1718-y

Navigation