Skip to main content
Log in

Asymptotic Behavior of Solutions to an Evolution Equation for Bidirectional Surface Waves in Convecting Fluids

  • Published:
Ukrainian Mathematical Journal Aims and scope

We consider the Cauchy problem for an evolution equation used to model bidirectional surface waves in convecting fluids. We study the existence, uniqueness, and asymptotic properties of global solutions to the initial-value problem associated with this equation in ℝn. We also obtain some polynomial decay estimates for the energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Adams and J. J. F. Fournier, “Sobolev spaces,” Mathematics, 140, Academic Press, New York; London (1975).

  2. H. Brezis and T. Cazenave, Nonlinear Evolution Equations, Pierre and Marie Curie University (1994).

  3. P. Coullet and S. Fauve, “Propagative phase dynamics for systems with Galilean invariance,” Phys. Rev. Lett., 55, 2857–2859 (1985).

    Article  Google Scholar 

  4. C. R. da Luz and R. C. Charão, “Asymptotic properties for a semilinear plate equation in unbounded domains,” J. Hyperbolic Different. Equat., 6, 269–294 (2009).

    Article  MathSciNet  Google Scholar 

  5. E. B. Davis and A. M. Hinz, “Explicit constants for Rellich inequalities in Lp(Ω),” Math. Z., 227, 511–523 (1998).

    Article  MathSciNet  Google Scholar 

  6. M. C. Depassier, “Evolution equation for bidirectional surface waves in a convecting fluid,” Phys. Fluids, 18, Article 107102 (2006).

    Article  MathSciNet  Google Scholar 

  7. S. Fauve, E. W. Bolton, and M. E. Brachet, “Nonlinear oscillatory convection: A quantitative phase approach,” Phys. D, 29, 202–214 (1987).

    Article  MathSciNet  Google Scholar 

  8. P. Galenko, “Phase-field model with relaxation of the diffusion flux in nonequilibrium solidification of a binary system,” Phys. Lett. A, 287, 190–197 (2001).

    Article  Google Scholar 

  9. P. Galenko and D. Jou, “Diffuse-interface model for rapid phase transformations in nonequilibrium systems,” Phys. Rev. E, 71, Article 046125 (2005).

    Article  Google Scholar 

  10. P. Galenko and V. Lebedev, “Analysis of the dispersion relation in spinodal decomposition of a binary system,” Philos. Mag. Lett., 87, 821–827 (2007).

    Article  Google Scholar 

  11. R. Ikehata, “Energy decay of solution for the semilinear dissipative wave equations in an exterior domain,” Funkc. Ekvac., 44, 487–499 (2001).

    MathSciNet  MATH  Google Scholar 

  12. Y. Liu and S. Kawashima, “Global existence and asymptotic behavior of solutions for quasi-linear dissipative plate equation,” Discrete Contin. Dyn. Syst., 29, 1113–1139 (2011).

    Article  MathSciNet  Google Scholar 

  13. Y. Liu and S. Kawashima, “Global existence and decay of solutions for a quasi-linear dissipative plate equation,” J. Hyperbolic Different. Equat., 8, 591–614 (2011).

    Article  MathSciNet  Google Scholar 

  14. Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems, Chapman & Hall/CRC, Boca Raton, FL (1999).

    MATH  Google Scholar 

  15. Y. Sugitani and S. Kawashima, “Decay estimates of solutions to a semi-linear dissipative plate equation,” J. Hyperbolic Different. Equat., 7, 471–501 (2010).

    Article  Google Scholar 

  16. I. E. Segal, “Dispersion for nonlinear relativistic equations, II,” Ann. Sci. École Norm. Sup. (4), 1, 459–497 (1968).

  17. H. Takeda, Y. Maekawa, and S. Kawashima, “Asymptotic profile of solutions to a hyperbolic Cahn–Hilliard equation,” Bull. Inst. Math. Acad. Sin. (N.S.), 10, 479–539 (2015).

  18. Y. Wang, F. Liu, and Y. Zhang, “Global existence and asymptotic of solutions for a semi-linear wave equation,” J. Math. Anal. Appl., 385, 836–853 (2012).

    Article  MathSciNet  Google Scholar 

  19. Y. Wang and Z. Wei, “Global existence and asymptotic behavior of solutions to Cahn–Hilliard equation with inertial term,” Internat. J. Math., 23, Article 1250087 (2012).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Esfahani.

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 72, No. 10, pp. 1386–1399, October, 2020. Ukrainian DOI: 10.37863/umzh.v72i10.6032.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoudi, H., Esfahani, A. Asymptotic Behavior of Solutions to an Evolution Equation for Bidirectional Surface Waves in Convecting Fluids. Ukr Math J 72, 1595–1612 (2021). https://doi.org/10.1007/s11253-021-01874-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-021-01874-6

Navigation