Skip to main content
Log in

Breakup Behaviors of Viscoelastic Polymer Droplets in 3-D Pore Throat Structure Microchannel

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Polymer solution has extremely extensive applications in many natural and industrial processes, especially in oilfield development field, such as polymer flooding, fracturing and water shut-off. Thus, the study of flow behaviors of polymer in formation pores is significantly important. In this paper, the flow behaviors of the polymer droplets in the 3-D pore throat structure were systematically studied. Additionally, the influencing factors (polymer concentration, molecular weight and pore throat ratio, for instance) were investigated. As the increasing of polymer concentration and molecular weight, the polymer droplets were more difficult to break, which means the critical flow rate decreased and the average sizes of the first daughter droplets (FDD) were longer synchronously. Moreover, with the increase in pore throat ratio, the critical flow rate increased and the length of the FDD decreased. In addition, the prediction models of the length of the FDD with polymer concentration and pore throat ratio were established, respectively. The prediction model revealed that the length of the FDD satisfied an exponential relationship with the polymer concentration and a linear relationship with the pore throat ratio. Finally, the average size of droplets after macroscopic core flooding experiment was 8 μm and 17 μm when the polymer concentration was 0.01% and 0.1%, respectively. The results were consistent with the breakup behaviors of polymer droplets in the microscopic pore throat structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • An, Y.X., Jiang, G.C., Qi, Y.R., Ge, Q.Y.: Plugging agent of shale base on nano flexible polymer. In: Applied Mechanics and Materials 2016, pp. 15–19. Trans Tech Publ

  • Chauliac, C., Aragonés, J.-M., Bestion, D., Cacuci, D.G., Crouzet, N., Weiss, F.-P., Zimmermann, M.A.: NURESIM–A European simulation platform for nuclear reactor safety: Multi-scale and multi-physics calculations, sensitivity and uncertainty analysis. Nucl. Eng. Des. 241(9), 3416–3426 (2011)

    Article  Google Scholar 

  • Chen, Y.-T., Chang, W.-C., Fang, W.-F., Ting, S.-C., Yao, D.-J., Yang, J.-T.: Fission and fusion of droplets in a 3-D crossing microstructure. Microfluid. Nanofluid. 13(2), 239–247 (2012)

    Article  Google Scholar 

  • Christopher, G., Anna, S.: Passive breakup of viscoelastic droplets and filament self-thinning at a microfluidic T-junction. J. Rheol. 53(3), 663–683 (2009)

    Article  Google Scholar 

  • Clarke, A., Howe, A.M., Mitchell, J., Staniland, J., Hawkes, L., Leeper, K.: Mechanism of anomalously increased oil displacement with aqueous viscoelastic polymer solutions. Soft Matter 11(18), 3536–3541 (2015)

    Article  Google Scholar 

  • Conn, C.A., Ma, K., Hirasaki, G.J., Biswal, S.L.: Visualizing oil displacement with foam in a microfluidic device with permeability contrast. Lab Chip 14(20), 3968–3977 (2014)

    Article  Google Scholar 

  • Cooke Jr, C.E.: Method and materials for hydraulic fracturing of wells. In. Google Patents (2005)

  • Cubaud, T., Jose, B.M., Darvishi, S., Sun, R.: Droplet breakup and viscosity-stratified flows in microchannels. Int. j. Multiph. Flow 39, 29–36 (2012)

    Article  Google Scholar 

  • Delshad, M., Kim, D.H., Magbagbeola, O.A., Huh, C., Pope, G.A., Tarahhom, F.: Mechanistic interpretation and utilization of viscoelastic behavior of polymer solutions for improved polymer-flood efficiency. In: SPE Symposium on Improved Oil Recovery 2008. Society of Petroleum Engineers

  • Ehrenfried, D.H.: Impact of viscoelastic polymer flooding on residual oil saturation in sandstones. (2013)

  • Emadi, A., Sohrabi, M.: Visual investigation of low salinity waterflooding. In: International Symposium of the Society of Core Analysts, Aberdeen, Scotland, UK 2012, pp. 27–30

  • Ferry, J.D.: Viscoelastic Properties of Polymers. Wiley, Hoboken (1980)

    Google Scholar 

  • Fidalgo, L.M., Abell, C., Huck, W.T.: Surface-induced droplet fusion in microfluidic devices. Lab Chip 7(8), 984–986 (2007)

    Article  Google Scholar 

  • Fu, L., Zhang, G., Ge, J., Liao, K., Pei, H., Jiang, P., Li, X.: Study on organic alkali-surfactant-polymer flooding for enhanced ordinary heavy oil recovery. Colloids Surf. A 508, 230–239 (2016)

    Article  Google Scholar 

  • Garstecki, P., Fuerstman, M.J., Stone, H.A., Whitesides, G.M.: Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up. Lab Chip 6(3), 437–446 (2006)

    Article  Google Scholar 

  • Harris, P.C.: Fracturing-fluid additives. J. Pet. Technol. 40(10), 1277–271279 (1988)

    Article  Google Scholar 

  • Herbas, J., Wegner, J., Hincapie, R., Födisch, H., Ganzer, L., Del Castillo, J., Mugizi, H.M.: Comprehensive micromodel study to evaluate polymer EOR in unconsolidated sand reservoirs. In: SPE Middle East Oil & Gas Show and Conference 2015. Society of Petroleum Engineers

  • Hua, Z., Lin, M., Guo, J., Xu, F., Li, Z., Li, M.: Study on plugging performance of cross-linked polymer microspheres with reservoir pores. J. Petrol. Sci. Eng. 105, 70–75 (2013)

    Article  Google Scholar 

  • Jayne, R.S., Wu, H., Pollyea, R.M.: Geologic CO2 sequestration and permeability uncertainty in a highly heterogeneous reservoir. Int. j. Greenh. Gas Control 83, 128–139 (2019)

    Article  Google Scholar 

  • Kenney, S., Poper, K., Chapagain, G., Christopher, G.F.: Large Deborah number flows around confined microfluidic cylinders. Rheol. Acta 52(5), 485–497 (2013)

    Article  Google Scholar 

  • Kim, D.H., Lee, S., Ahn, C.H., Huh, C., Pope, G.A.: Development of a viscoelastic property database for EOR polymers. In: SPE Improved Oil Recovery Symposium 2010. Society of Petroleum Engineers

  • Kovscek, A., Tang, G.-Q., Radke, C.: Verification of roof snap off as a foam-generation mechanism in porous media at steady state. Colloids Surf. A 302(1–3), 251–260 (2007)

    Article  Google Scholar 

  • Le Moullec, Y., Potier, O., Gentric, C., Leclerc, J.P.: Flow field and residence time distribution simulation of a cross-flow gas–liquid wastewater treatment reactor using CFD. Chem. Eng. Sci. 63(9), 2436–2449 (2008)

    Article  Google Scholar 

  • Lenormand, R., Zarcone, C., Sarr, A.: Mechanisms of the displacement of one fluid by another in a network of capillary ducts. J. Fluid Mech 135(34), 337–353 (1983)

    Article  Google Scholar 

  • Loveless, D., Holtsclaw, J., Weaver, J., Ogle, J., Saini, R.: Multifunctional boronic acid crosslinker for fracturing fluids. In: IPTC 2014: International petroleum technology conference 2014, pp. cp-395-00206. European Association of Geoscientists & Engineers

  • Ma, K., Liontas, R., Conn, C.A., Hirasaki, G.J., Biswal, S.L.: Visualization of improved sweep with foam in heterogeneous porous media using microfluidics. Soft Matter 8(41), 10669–10675 (2012)

    Article  Google Scholar 

  • Macosko, C.W.: Rheology Principles. Measurements and Applications (1994)

  • Medici, G., West, L., Banwart, S.: Groundwater flow velocities in a fractured carbonate aquifer-type: implications for contaminant transport. J. Contam. Hydrol. 222, 1–16 (2019)

    Article  Google Scholar 

  • Nekouei, M., Vanapalli, S.A.: Volume-of-fluid simulations in microfluidic T-junction devices: Influence of viscosity ratio on droplet size. Phys. Fluids 29(3), 032007 (2017)

    Article  Google Scholar 

  • Nisisako, T., Torii, T., Higuchi, T.: Droplet formation in a microchannel network. Lab Chip 2(1), 24–26 (2002)

    Article  Google Scholar 

  • Quennouz, N., Ryba, M., Argillier, J.-F., Herzhaft, B., Peysson, Y., Pannacci, N.: Microfluidic study of foams flow for enhanced oil recovery (EOR). Oil Gas Sci. Technol. Revue d’IFP Energies Nouvelles 69(3), 457–466 (2014)

    Article  Google Scholar 

  • Roof, J.: Snap-off of oil droplets in water-wet pores. Soc. Pet. Eng. j. 10(01), 85–90 (1970)

    Article  Google Scholar 

  • Rossen, W.R.: Snap-off in constricted tubes and porous media. Colloids Surf. A 166(1–3), 101–107 (2000)

    Article  Google Scholar 

  • Sareen, A., Zhou, M.J., Zaghmoot, I., Cruz, C., Sun, H., Qu, Q., Li, L.: Successful slickwater fracturing in ultrahigh TDS produced water by novel environmentally preferred friction reducer. In: International Petroleum Technology Conference 2014. International Petroleum Technology Conference

  • Sheng, J.J., Leonhardt, B., Azri, N.: Status of polymer-flooding technology. J. Can. Pet. Technol. 54(02), 116–126 (2015)

    Article  Google Scholar 

  • Shi, X., Kenney, S., Chapagain, G., Christopher, G.F.: Mechanisms of onset for moderate Mach number instabilities of viscoelastic flows around confined cylinders. Rheol. Acta 54(9), 805–815 (2015)

    Article  Google Scholar 

  • Skauge, A., Zamani, N., Gausdal Jacobsen, J., Shaker Shiran, B., Al-Shakry, B., Skauge, T.: Polymer flow in porous media: Relevance to enhanced oil recovery. Colloids Interfaces 2(3), 27 (2018)

    Article  Google Scholar 

  • Squires, T.M., Quake, S.R.: Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77(3), 977 (2005)

    Article  Google Scholar 

  • Sydansk, R.D.: Hydraulic fracturing process using a polymer gel. In. Google Patents, (1988)

  • Tan, Y.-C., Cristini, V., Lee, A.P.: Monodispersed microfluidic droplet generation by shear focusing microfluidic device. Sens. Actuators B Chem. 114(1), 350–356 (2006)

    Article  Google Scholar 

  • Teh, S.-Y., Lin, R., Hung, L.-H., Lee, A.P.: Droplet microfluidics. Lab Chip 8(2), 198–220 (2008)

    Article  Google Scholar 

  • Thomas, S., Farouq Ali, S.: Flow of emulsions in porous media, and potential for enhanced oil recovery. J. Pet. Sci. Eng. 3, 121–136 (1989)

    Article  Google Scholar 

  • Wang, X., Wang, K., Riaud, A., Wang, X., Luo, G.: Experimental study of liquid/liquid second-dispersion process in constrictive microchannels. Chem. Eng. j. 254, 443–451 (2014)

    Article  Google Scholar 

  • Wei, B., Romero-Zerón, L., Rodrigue, D.: Mechanical properties and flow behavior of polymers for enhanced oil recovery. J. Macromol. Sci. Part B 53(4), 625–644 (2014a)

    Article  Google Scholar 

  • Wei, B., Romero-Zerón, L., Rodrigue, D.: Oil displacement mechanisms of viscoelastic polymers in enhanced oil recovery (EOR): a review. J. Pet. Explor. Prod. Technol. 4(2), 113–121 (2014b)

    Article  Google Scholar 

  • Xu, K., Liang, T., Zhu, P., Qi, P., Lu, J., Huh, C., Balhoff, M.: A 2.5-D glass micromodel for investigation of multi-phase flow in porous media. Lab Chip 17(4), 640–646 (2017)

    Article  Google Scholar 

  • Zhao, G., Dai, C., Li, W., Yan, Z., Zhao, M.: Research on a temporary plugging agent based on polymer gel for reservoir acidification. J. Pet. Explor. Prod. Technol. 6(3), 465–472 (2016a)

    Article  Google Scholar 

  • Zhao, Y., Shen, A.Q., Haward, S.J.: Flow of wormlike micellar solutions around confined microfluidic cylinders. Soft Matter 12(42), 8666–8681 (2016b)

    Article  Google Scholar 

  • Zhao, M., Cao, M., Hu, Y., Yang, Q., Wu, Y., Chu, Z., Hu, X., Dai, C.: Investigating breakup behaviors of the non-Newtonian fluid: a case study of oil droplet using 3-D pore throat structured microchannels. Colloids Surf. A 587, 124330 (2020)

    Article  Google Scholar 

  • Zhou, H., Zhu, C., Fu, T., Ma, Y., Li, H.Z.: Dynamics and interfacial evolution for bubble breakup in shear-thinning non-Newtonian fluid in microfluidic T-junction. Chem. Eng. Sci. 208, 115158 (2019)

    Article  Google Scholar 

  • Zoveidavianpoor, M., Gharibi, A.: Application of polymers for coating of proppant in hydraulic fracturing of subterraneous formations: a comprehensive review. J. Nat. Gas Sci. Eng. 24, 197–209 (2015)

    Article  Google Scholar 

Download references

Funding

Funding was provided by National Key Research and Development Program of China (Grant No. 2019YFA0708700), the National Natural Science Foundation of China (Grant No. 51704313) and the Fundamental Research Funds for the Central Universities (Grant No. 18CX02028A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongzhong Chu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, C., Chu, Z., Jiang, Q. et al. Breakup Behaviors of Viscoelastic Polymer Droplets in 3-D Pore Throat Structure Microchannel. Transp Porous Med 144, 133–148 (2022). https://doi.org/10.1007/s11242-021-01608-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-021-01608-z

Keywords

Navigation