Skip to main content
Log in

PSoC-Based Embedded Instrumentation and Processing of sEMG Signals

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

The purpose of this research is to design and implement embedded instrumentation and processing for sEMG signal. This embedded system is based on PSoC reconfigurable technology. The methodological approach followed consists of two aspects. A theoretical aspect aims to identify sEMG signal proprieties and characterize the key performances of electromyography instrumentation. And a practical aspect demonstrates the design and the implementation of this instrumentation. Indeed, the sEMG signal is acquired and conditioned following three essential operations namely, differential amplification, filtering, and Analog-to-Digital conversion. The digital processing is implemented by the elaboration of an algorithm allowing sEMG signal temporal feature extraction. Besides, a test is established firstly with a signal generator based on NI ELVIS II + and LabVIEW, and secondly with an experimental test on a real subject based on surface electrodes. The results obtained correspond to those desired, indicating that the system can be developed by implementing other advanced signal processing techniques for extracting other time and frequency parameters for an efficient sEMG signal analysis. PSoC reconfigurable technology offers a framework for designing practical instrumentation and processing of sEMG signals with a minimum of external circuitry and has prospects in biomedical instrumentation development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Rangayyan, R. M. (2015). Introduction to biomedical signals. In Biomedical signal analysis. Canada: Wiley-IEEE Press.

  2. Taylor, B. J. C. J. J., & Memmler, R. L. (2013). Memmler's the structure and function of the human body (10th ed). China: Library of Congress Cataloging-in-Publication Data

  3. Kuriki, H. U., de Azevedo, F. M., Takahashi, L. S. O., Mello, E. M., de Faria Negrão Filho, R., & Alves, N. (2012). The relationship between electromyography and muscle force. EMG methods for evaluating muscle and nerve function. IntechOpen.

  4. Milosevic, B., Benatti, S., & Farella, E. (Eds.) (2017). Design challenges for wearable EMG applications. Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017: IEEE. https://doi.org/10.23919/DATE.2017.7927217

  5. Nazmi, N., Rahman, A., Azizi, M., Yamamoto, S.-I., Ahmad, S. A., Zamzuri, H., et al. (2016). A review of classification techniques of EMG signals during isotonic and isometric contractions. Sensors, 16(8), 1304. https://doi.org/10.3390/s16081304

    Article  Google Scholar 

  6. Bianchi, A., Cerutti, S., Mainardi, L. (2015). Digital biomedical signal acquisition and processing. In Biomedical signals, imaging, and informatics (4th ed.) Boca Raton: CRC Press Taylor & Francis Group.

  7. García, A., Toral, V., Márquez, Á., García, A., Castillo, E., Parrilla, L., et al. (2018). Non-intrusive tank-filling sensor based on sound resonance. Electronics, 7(12), 378. https://doi.org/10.3390/electronics7120378

    Article  Google Scholar 

  8. Toral, V., García, A., Romero, F. J., Morales, D. P., Castillo, E., Parrilla, L., et al. (2019). Wearable system for biosignal acquisition and monitoring based on reconfigurable technologies. Sensors, 19(7), 1590. https://doi.org/10.3390/s19071590

    Article  Google Scholar 

  9. Kansal, A. R. (2014). A study on programmable system on chip. IOSR Journal of VLSI and Signal Processing, 4(5), 31–37

    Article  Google Scholar 

  10. Morales, D., Castillo, E., Parrilla, L., García, A., & Otín, A. (Eds.) (2015). Towards project-based learning applied to the electronic engineering studies. In 2015 Conference on design of circuits and integrated systems (DCIS). IEEE. https://doi.org/10.1109/DCIS.2015.7388615

  11. Kamavuako, E. N., & Farina, D. (2014). Neurology: Peripheral nerves and muscles. In The Physiological measurement handbook (1st ed.). Boca Raton: CRC Press Taylor & Francis Group. https://doi.org/10.1201/b17831

  12. Squire, J. M. (2016). Muscle contraction: Sliding filament history, sarcomere dynamics and the two Huxleys. Global Cardiology Science & Practice, 2016(2), e201611

    Article  Google Scholar 

  13. Ibrahim, A., Gannapathy, V., Chong, L., & Isa, I. (2016). Analysis of electromyography (EMG) signal for human arm muscle: A review. Advanced Computer and Communication Engineering Technology (pp. 567–575). Springer. https://doi.org/10.1007/978-3-319-24584-3_49

  14. Kamen, G. J. R. (2014). DGE. Research Methods in Biomechanics. Champaign, IL: Human Kinetics Publ, et al. Electromyographic kinesiology.

  15. Online Student Edition Page 163. Introduction to Anatomy and Physiology. https://www.gwonlinetextbooks.com/introduction-anatomy-physiology-2014/173. Accessed 10 July 2019.

  16. Kilby, J., Prasad, K., & Mawston, G. J. I. S. J. (2016). Multi-channel surface electromyography electrodes: a review. IEEE Sensors Journal., 16(14), 5510–5519. https://doi.org/10.1109/JSEN.2016.2569072

    Article  Google Scholar 

  17. Shair, E., Ahmad, S., Marhaban, M., Mohd Tamrin, S., & Abdullah, A. J. B. (2017). EMG processing-based measures of fatigue assessment during manual lifting. BioMed Research International. https://doi.org/10.1155/2017/3937254

    Article  Google Scholar 

  18. Gerdle, B., Karlsson, S., Day, S., & Djupsjöbacka M. (1999). Acquisition, processing and analysis of the surface electromyogram. In Modern techniques in neuroscience research (pp. 705–55). Springer. https://doi.org/10.1007/978-3-642-58552-4_26

  19. Acar, G., Ozturk, O., Golparvar, A. J., Elboshra, T. A., Böhringer, K., & Yapici, M. K. J. E. (2019). Wearable and flexible textile electrodes for biopotential signal monitoring: A review. Electronics, 8(5), 479. https://doi.org/10.3390/electronics8050479

    Article  Google Scholar 

  20. Salman, A., Iqbal, J., Izhar, U., Khan, U. S., & Rashid, N. (Eds.). (2012). Optimized circuit for EMG signal processing. In 2012 International conference of robotics and artificial intelligence. IEEE. https://doi.org/10.1109/ICRAI.2012.6413390

  21. Kugelstadt, T. (2009). Active filter design techniques. In Op amps for everyone (pp. 365–438). Elsevier. https://doi.org/10.1016/B978-075067701-1/50019-5

  22. Ferretti, J. (2017). Design of an open source AED in the framework of the UBORA project.

  23. Abilash, A., & Radha, S., (Eds.). (2016). Precision Capacitance Readout Electronics for Micro sensors Using Programmable System on Chip. In The international symposium on intelligent systems technologies and application.2016: Springer. https://doi.org/10.1007/978-3-319-47952-1_55

  24. Rojas, W. F., Santa, F. M., & Porras, J. E. (2014). Biomedical instrumentation applications using Psoc microcontrollers. Vision Electronica, 8(1), 70–81

    Google Scholar 

  25. Nizamuddin, M. (2017). Design & performance analysis of instrumentation amplifier at nanoscale. International Journal of Advance Research and Innovation, 3(1), 793–798

    Google Scholar 

  26. Wide Supply Range, Rail-to-Rail Output Instrumentation Amplifier, Analog Devices AD8226 Data Sheet (2012).

  27. Shehova, D. A., Yakimov, P. I., Lyubomirov, S. Y., & Chekichev, A. H. (2014). Active filters design teaching using filterpro software. Annual Journal of Electronics, 2014, 143–145

    Google Scholar 

  28. CE195277 - Delta Sigma ADC in SingleEnded Mode with PSoC 3/PSoC 5LP, Cypress Semiconductor Corporation.

  29. Dithered Voltage Digital to Analog Converter (DVDAC), PSoC Creator Component Datasheet.

  30. Using the library PSoC1 (AN2152) to PSoC 4 – PSoC5. https://github.com/SXHXC/PSoC_NokiaLCD. Accessed 10 May 2019.

  31. Phinyomark, A., Phukpattaranont, P., & Limsakul, C. J. (2012). Feature reduction and selection for EMG signal classification. Expert Systems with Applications, 39(8), 7420–7431. https://doi.org/10.1016/j.eswa.2012.01.102

    Article  Google Scholar 

  32. Abdelouahad, A., Belkhou, A., Jbari, A., & Bellarbi, L. (Eds.). (2018). Time and frequency parameters of sEMG signal—Force relationship. In 2018 4th international conference on optimization and applications (ICOA). IEEE. https://doi.org/10.1109/ICOA.2018.8370547

  33. Konrad, P. (2005). The ABC of EMG: A Practical Introduction to Kinesiological Electromyography.

  34. Peleg, D., Braiman, E., Yom-Tov, E., & Inbar, G. F. (2002). Classification of finger activation for use in a robotic prosthesis arm. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 10(4), 290–293

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed El Fezazi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Fezazi, M., Achmamad, A., Aqil, M. et al. PSoC-Based Embedded Instrumentation and Processing of sEMG Signals. Analog Integr Circ Sig Process 108, 635–650 (2021). https://doi.org/10.1007/s10470-021-01850-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-021-01850-x

Keywords

Navigation