Skip to main content
Log in

Generalized local projection stabilized nonconforming finite element methods for Darcy equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

An a priori analysis for a generalized local projection stabilized finite element solution of the Darcy equations is presented in this paper. A first-order nonconforming \(\mathbb {P}^{nc}_{1}\) finite element space is used to approximate the velocity, whereas the pressure is approximated using two different finite elements, namely piecewise constant \(\mathbb {P}_{0}\) and piecewise linear nonconforming \(\mathbb {P}^{nc}_{1}\) elements. The considered finite element pairs, \(\mathbb {P}^{nc}_{1}/\mathbb {P}_{0}\) and \(\mathbb {P}^{nc}_{1}/\mathbb {P}^{nc}_{1} \), are inconsistent and incompatibility, respectively, for the Darcy problem. The stabilized discrete bilinear form satisfies an inf-sup condition with a generalized local projection norm. Moreover, a priori error estimates are established for both finite element pairs. Finally, the validation of the proposed stabilization scheme is demonstrated with appropriate numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bank, RE, Yserentant, H: On the H1-stability of the L2-projection onto finite element spaces. Numer. Math. 126(2), 361–381 (2014)

    Article  MathSciNet  Google Scholar 

  2. Becker, R, Braack, M: A finite element pressure gradient stabilization for the Stokes equations based on local projections. Calcolo 38(4), 173–199 (2001)

    Article  MathSciNet  Google Scholar 

  3. Bergamaschi, L, Mantica, S, Manzini, G: A mixed finite element-finite volume formulation of the black-oil model. SIAM J. Sci. Comput. 20 (3), 970–997 (1998)

    Article  MathSciNet  Google Scholar 

  4. Biswas, R, Dond, AK, Gudi, T: Edge patch-wise local projection stabilized nonconforming FEM for the Oseen problem. Comput Methods Appl. Math. 19(2), 189–214 (2019)

    Article  MathSciNet  Google Scholar 

  5. Bochev, PB, Dohrmann, CR: A computational study of stabilized, low-order C0 finite element approximations of Darcy equations. Comput. Mech. 38(4–5), 323–333 (2006)

    Article  Google Scholar 

  6. Bochev, P B, Gunzburger, MD: A locally conservative least-squares method for Darcy flows. Commun. Numer. Methods Eng. 24(2), 97–110 (2008)

    Article  MathSciNet  Google Scholar 

  7. Braack, M.: Optimal control in fluid mechanics by finite elements with symmetric stabilization. SIAM J. Control Optim. 48(2), 672–687 (2009)

    Article  MathSciNet  Google Scholar 

  8. Braack, M., Burman, E.: Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method. SIAM J. Numer. Anal. 43(6), 2544–2566 (2006)

    Article  MathSciNet  Google Scholar 

  9. Braack, M, Schieweck, F: Equal-order finite elements with local projection stabilization for the Darcy–Brinkman equations. Comput. Methods Appl. Mech. Eng. 200(9–12), 1126–1136 (2011)

    Article  MathSciNet  Google Scholar 

  10. Brenner, S.C., Scott, LR: The mathematical theory of finite element methods. Springer, New York (2008)

    Book  Google Scholar 

  11. Brezzi, F, Douglas, J. Jr., Marini, L.D.: Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47(2), 217–235 (1985)

    Article  MathSciNet  Google Scholar 

  12. Brezzi, F, Douglas, J, Durán, R, Fortin, M: Mixed finite elements for second order elliptic problems in three variables. Numer. Math. 51(2), 237–250 (1987)

    Article  MathSciNet  Google Scholar 

  13. Brezzi, F., Fortin, M., Marini, L.D., et al.: Efficient rectangular mixed finite elements in two and three space variables. ESAIM Math. Model. Numer. Anal. 21(4), 581–604 (1987)

    Article  MathSciNet  Google Scholar 

  14. Burman, E., Ern, A.: A continuous finite element method with face penalty to approximate Friedrichs’ systems. M2AN Math. Model. Numer. Anal. 41(1), 55–76 (2007)

    Article  MathSciNet  Google Scholar 

  15. Burman, E., Hansbo, P.: Stabilized Crouzeix-Raviart element for the Darcy-Stokes problem. Numer. Methods Partial Differ. Equ. 21(5), 986–997 (2005)

    Article  MathSciNet  Google Scholar 

  16. Burman, E., Hansbo, P.: A stabilized non-conforming finite element method for incompressible flow. Comput. Methods Appl. Mech. Eng. 195(23–24), 2881–2899 (2006)

    Article  MathSciNet  Google Scholar 

  17. Burman, E., Hansbo, P.: A unified stabilized method for Stokes’ and Darcy’s equations. J. Comput. Appl. Math. 198(1), 35–51 (2007)

    Article  MathSciNet  Google Scholar 

  18. Chavent, G, Cohen, G, Jaffre, J: Discontinuous upwinding and mixed finite elements for two-phase flows in reservoir simulation. Comput. Methods Appl. Mech. Eng. 47(1–2), 93–118 (1984)

    Article  Google Scholar 

  19. Chen, Z.: Finite element methods and their applications. Springer Science & Business Media, New York (2005)

    MATH  Google Scholar 

  20. Crouzeix, M., Raviart, P. -A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I. Rev. Française Automat. Informat. Recherche Opérationnelle Sér Rouge 7(R-3), 33–75 (1973)

    MathSciNet  MATH  Google Scholar 

  21. Di Pietro, D.A., Ern, A.: Mathematical aspects of discontinuous Galerkin methods, vol. 69. Springer Science & Business Media, New York (2011)

    Google Scholar 

  22. Dond, AK, Gudi, T.: Patch-wise local projection stabilized finite element methods for convection–diffusion–reaction problems. Numer. Methods Partial Differ. Equ. 35(2), 638–663 (2019)

    Article  MathSciNet  Google Scholar 

  23. Douglas, J. Jr, Pereira, F., Yeh, L.-M.: A locally conservative Eulerian-Lagrangian numerical method and its application to nonlinear transport in porous media. Comput. Geosci. 4(1), 1–40 (2000)

    Article  MathSciNet  Google Scholar 

  24. Durlofsky, L.J.: Accuracy of mixed and control volume finite element approximations to Darcy velocity and related quantities. Water Resour. Res. 30(4), 965–973 (1994)

    Article  Google Scholar 

  25. Ern, A, Guermond, J L: Theory and practice of finite elements. Springer, New York (2004)

    Book  Google Scholar 

  26. Ewing, R E, Heinemann, RF: Mixed finite element approximation of phase velocities in compositional reservoir simulation. Comput. Methods Appl. Mech. Eng. 47(1–2), 161–175 (1984)

    Article  Google Scholar 

  27. Ewing, R.E, Russell, T.F., Wheeler, M.F.: Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics. Comput. Methods Appl. Mech. Eng. 47(1–2), 73–92 (1984)

    Article  MathSciNet  Google Scholar 

  28. Ganesan, S., Matthies, G., Tobiska, L.: Local projection stabilization of equal order interpolation applied to the Stokes problem. Math Comp. 77(264), 2039–2060 (2008)

    Article  MathSciNet  Google Scholar 

  29. Ganesan, S., Tobiska, L.: Stabilization by local projection for convection–diffusion and incompressible flow problems. J. Sci. Comput. 43(3), 326–342 (2010)

    Article  MathSciNet  Google Scholar 

  30. Garg, D., Ganesan, S.: Generalized local projection stabilized finite element method for Advection-reaction problems. Communicated

  31. Guermond, J.-L.: Subgrid stabilization of Galerkin approximations of linear monotone operators. IMA J. Numer. Anal. 21(1), 165–197 (2001)

    Article  MathSciNet  Google Scholar 

  32. John, V., Knobloch, P., Savescu, S.B.: A posteriori optimization of parameters in stabilized methods for convection-diffusion problems—Part I. Comput. Methods Appl. Mech Eng. 200, 2916–2929 (2011)

    Article  MathSciNet  Google Scholar 

  33. Knobloch, P.: A generalization of the local projection stabilization for convection-diffusion-reaction equations. SIAM J. Numer. Anal. 48(2), 659–680 (2010)

    Article  MathSciNet  Google Scholar 

  34. Knobloch, P., Tobiska, L.: On the stability of finite-element discretizations of convection-diffusion-reaction equations. IMA J. Numer. Anal. 31(1), 147–164 (2011)

    Article  MathSciNet  Google Scholar 

  35. Knobloch, P., Tobiska, L.: Improved stability and error analysis for a class of local projection stabilizations applied to the Oseen problem. Numer. Methods Partial Differ. Equ. 29(1), 206–225 (2013)

    Article  MathSciNet  Google Scholar 

  36. Mardal, K.A., Tai, X.-C., Winther, R.: A robust finite element method for Darcy–Stokes flow. SIAM J. Numer. Anal. 40(5), 1605–1631 (2002)

    Article  MathSciNet  Google Scholar 

  37. Masud, A., Hughes, TJR: A stabilized mixed finite element method for Darcy flow. Comput. Methods Appl. Mech. Eng. 191(39–40), 4341–4370 (2002)

    Article  MathSciNet  Google Scholar 

  38. Nafa, K.: Local projection finite element stabilization for Darcy flow. Int. J. Numer. Anal. Model. 7(4), 656–666 (2010)

    MathSciNet  MATH  Google Scholar 

  39. Raviart, P.-A., Thomas, J.-M.: A mixed finite element method for 2-nd order elliptic problems. In: Mathematical Aspects of Finite Element Methods, pp 292–315. Springer (1977)

  40. Ross, H.-G., Stynes, M., Tobiska, L.: Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion-Reaction and Flow Problems, vol. 24. Springer Science & Business Media (2008)

  41. Tobiska, L.: On the relationship of local projection stabilization to other stabilized methods for one-dimensional advection-diffusion equations. Comput. Methods Appl. Mech. Eng. 198(5–8), 831–837 (2009)

    Article  MathSciNet  Google Scholar 

  42. Venkatesan, J., Ganesan, S.: Finite element computations of viscoelastic two-phase flows using local projection stabilization. Int. J. Numer. Meth Fluids. https://doi.org/10.1002/fld.4808 (2020)

Download references

Funding

The first author would like to thank the Tata Trusts traveling grants (ODAA/INT/19/189) and the National Mathematics Initiative (NMI), Department of Mathematics, Indian Institute of Science, Bengaluru, India. Furthermore, this work is partially supported by the Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India, with the grant EMR/2016/003412.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sashikumaar Ganesan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, D., Ganesan, S. Generalized local projection stabilized nonconforming finite element methods for Darcy equations. Numer Algor 89, 341–369 (2022). https://doi.org/10.1007/s11075-021-01117-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-021-01117-6

Keywords

Mathematics Subject Classification (2010)

Navigation