Skip to main content
Log in

Formalization of Ring Theory in PVS

Isomorphism Theorems, Principal, Prime and Maximal Ideals, Chinese Remainder Theorem

  • Published:
Journal of Automated Reasoning Aims and scope Submit manuscript

Abstract

This paper presents a PVS development of relevant results of the theory of rings. The PVS theory includes complete proofs of the three classical isomorphism theorems for rings, and characterizations of principal, prime and maximal ideals. Algebraic concepts and properties are specified and formalized as generally as possible allowing in this manner their application to other algebraic structures. The development provides the required elements to formalize important algebraic theorems. In particular, the paper presents the formalization of the general algebraic-theoretical version of the Chinese remainder theorem (CRT) for the theory of rings, as given in abstract algebra textbooks, proved as a consequence of the first isomorphism theorem. Also, the PVS theory includes a formalization of the number-theoretical version of CRT for the structure of integers, which is the version of CRT found in formalizations. CRT for integers is obtained as a consequence of the general version of CRT for the theory of rings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Available at https://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/.

References

  1. Aransay, J., Ballarin, C., Baillon, M., de Vilhena, P.E., Hohe, S., Kammüller, F., Paulson, L.C.: The Isabelle/HOL Algebra Library. Technical report, Isabelle Library, University of Cambridge Computer Laboratory and Technische Universität München (2019). https://isabelle.in.tum.de/dist/library/HOL/HOL-Algebra/document.pdf

  2. Artin, M.: Algebra, 2nd edn. Pearson, London (2010)

    MATH  Google Scholar 

  3. Ayala-Rincón, M., de Moura, F.L.C.: Applied Logic for Computer Scientists: Computational Deduction and Formal Proofs. UTiCS. Springer (2017). https://doi.org/10.1007/978-3-319-51653-0

  4. Ballarin, C.: Exploring the structure of an algebra text with locales. J. Autom. Reason. (2019). https://doi.org/10.1007/s10817-019-09537-9

    Article  MATH  Google Scholar 

  5. Bini, G., Flamini, F.: Finite Commutative Rings and Their Applications, vol. 680. Springer, Berlin (2012)

    MATH  Google Scholar 

  6. Bourbaki, N.:Élèments de mathématique. Algèbre: chapitres 1 à 3. Springer, Berlin (2006). Réimpression inchangée de la 2e éd. 1970 Edition

  7. Butler, R., Lester, D.: A PVS theory for abstract algebra (2007). http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html. Accessed 31 March 2019

  8. Butler, R.W.: Formalization of the integral calculus in the PVS theorem prover. J. Formaliz. Reason. 2(1), 1–26 (2009). https://doi.org/10.6092/issn.1972-5787/1349

    Article  MathSciNet  MATH  Google Scholar 

  9. Cano, G., Cohen, C., Dénès, M., Mörtberg, A., Siles, V.: Formalized linear algebra over elementary divisor rings in Coq. Log. Methods Comput. Sci. 12(2:7), 1–23 (2016). https://doi.org/10.2168/LMCS-12(2:7)2016

    Article  MathSciNet  MATH  Google Scholar 

  10. Cohen, C., Mahboubi, A.: Formal proofs in real algebraic geometry: from ordered fields to quantifier elimination. Log. Methods Comput. Sci. 8(1:2), 1–40 (2012). https://doi.org/10.2168/LMCS-8(1:2)2012

    Article  MathSciNet  MATH  Google Scholar 

  11. da Silva, A.B.A., de Lima, T.A., Galdino, A.L.: Formalizing ring theory in PVS. In: 9th International Conference on Interactive Theorem Proving ITP. Lecture Notes in Computer Science, vol. 10895, pp. 40–47. Springer (2018). https://doi.org/10.1007/978-3-319-94821-8_3

  12. Ding, C., Pei, D., Salomaa, A.: Chinese Remainder Theorem: Applications in Computing, Coding, Cryptography. World Scientific Publishing Co., Inc, River Edge (1996). https://doi.org/10.1142/3254

    Book  MATH  Google Scholar 

  13. Dougherty, S., Leroy, A.F.A., Puczyłowski, E., Solé, P.: Noncommutative Rings and Their Applications. Contemporary Mathematics (2015). https://doi.org/10.1090/conm/634

    Article  Google Scholar 

  14. Dougherty, S., Leroy, A.: Euclidean self-dual codes over non-commutative Frobenius rings. Appl. Algebra Eng. Commun. Comput. 27(3), 185–203 (2016). https://doi.org/10.1007/s00200-015-0277-0

    Article  MathSciNet  MATH  Google Scholar 

  15. Dummit, D.S., Foote, R.M.: Abstract Algebra, 3rd edn. Wiley, Hoboken (2003)

    MATH  Google Scholar 

  16. Galdino, A.L., Ayala-Rincón, M.: A PVS theory for term rewriting systems. Electron. Notes Theor. Comput. Sci. 247, 67–83 (2009). https://doi.org/10.1016/j.entcs.2009.07.049

    Article  MathSciNet  MATH  Google Scholar 

  17. Geuvers, H., Pollack, R., Wiedijk, F., Zwanenburg, J.: A constructive algebraic hierarchy in Coq. J. Symb. Comput. 34(4), 271–286 (2002). https://doi.org/10.1006/jsco.2002.0552

    Article  MathSciNet  MATH  Google Scholar 

  18. Gonthier, G., Asperti, A., Avigad, J., Bertot, Y., Cohen, C., Garillot, F., Roux, S.L., Mahboubi, A., O’Connor, R., Biha, S.O., Pasca, I., Rideau, L., Solovyev, A., Tassi, E., Théry, L.: A machine-checked proof of the odd order theorem. In: 4th International Conference on Interactive Theorem Proving ITP. Lecture Notes in Computer Science, vol. 7998, pp. 163–179. Springer (2013). https://doi.org/10.1007/978-3-642-39634-2_14

  19. Gonthier, G., Mahboubi, A., Rideau, L., Tassi, E., Théry, L.: A modular formalisation of finite group theory. In: 20th International Conference Theorem Proving in Higher Order Logics TPHOLs. Lecture Notes in Computer Science, vol. 4732, pp. 86–101. Springer (2007). https://doi.org/10.1007/978-3-540-74591-4_8

  20. Großschädl, J.: The Chinese remainder theorem and its application in a high-speed RSA crypto chip. In: 16th Annual Computer Security Applications Conference ACSAC, pp. 384–393. IEEE Computer Society (2000). https://doi.org/10.1109/ACSAC.2000.898893

  21. Heras, J., Martín-Mateos, F.J., Pascual, V.: Modelling algebraic structures and morphisms in ACL2. Appl. Algebra Eng. Commun. Comput. 26(3), 277–303 (2015). https://doi.org/10.1007/s00200-015-0252-9

    Article  MathSciNet  MATH  Google Scholar 

  22. Herstein, I.N.: Topics in Algebra, 2nd edn. Xerox College Publishing, Lexington (1975)

    MATH  Google Scholar 

  23. Hungerford, T.W.: Algebra. Graduate Texts in Mathematics, vol. 73. Springer, New York (1980). (Reprint of the 1974 original)

    Google Scholar 

  24. Jackson, P.B.: Enhancing the Nuprl Proof Development System and Applying it to Computational Abstract Algebra. Ph.D. thesis, Cornell University (1995)

  25. Jacobson, N.: Basic Algebra I. Dover Books on Mathematics, 2nd edn. Dover Publications, Mineola (2009)

    Google Scholar 

  26. Kornilowicz, A., Schwarzweller, C.: The first isomorphism theorem and other properties of rings. Formaliz. Math. 22(4), 291–301 (2014). https://doi.org/10.2478/forma-2014-0029

    Article  MATH  Google Scholar 

  27. Lester, D.: A PVS Theory for Continuity, Homeomorphisms, Connected and Compact Spaces, Borel Sets/Functions (2009). http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html. Accessed 31 March 2019

  28. Liang, H., Li, X., Xia, X.: Adaptive frequency estimation with low sampling rates based on robust Chinese remainder theorem and IIR notch filter. Adv. Adapt. Data Anal. 1(4), 587–600 (2009). https://doi.org/10.1142/S1793536909000230

    Article  MathSciNet  Google Scholar 

  29. Lidl, R., Niederreiter, H.: Introduction to Finite Fields and Their Applications. Cambridge University Press, Cambridge (1994)

    Book  Google Scholar 

  30. Noether, E.: Abstrakter Aufbau der Idealtheorie in algebraischen Zahl- und Funktionenkörpern. Mathematische Annalen 96(1), 26–61 (1927)

    Article  MathSciNet  Google Scholar 

  31. Owre, S., Shankar, N.: The Formal Semantics of PVS. Technical Report 97-2R, SRI International Computer Science Laboratory, Menlo Park (1997) (revised 1999)

  32. Philipoom, J.: Correct-by-Construction Finite Field Arithmetic in Coq. Master’s thesis, Master of Engineering in Computer Science, MIT (2018)

  33. Putinar, M., Sullivant, S.: Emerging Applications of Algebraic Geometry. The IMA Volumes in Mathematics and its Applications. Springer, New York (2008). https://doi.org/10.1007/978-0-387-09686-5

  34. Russinoff, D.M.: A Mechanical Proof of the Chinese Remainder Theorem. UTCS Technical Report-no longer available-ACL2 Workshop 2000 TR-00-29, University of Texas at Austin (2000)

  35. Schwarzweller, C.: The binomial theorem for algebraic structures. J. Formaliz. Math. 12(3), 559–564 (2003)

    Google Scholar 

  36. Schwarzweller, C.: The Chinese remainder theorem, its proofs and its generalizations in mathematical repositories. Stud. Log. Gramm. Rhetor. 18(31), 103–119 (2009)

    Google Scholar 

  37. Suárez, Y.G., Torres, E., Pereira, O., Pérez, C., Rodríguez, R.: Application of the ring theory in the segmentation of digital images. Int. J. Soft Comput. Math. Control 3(4), 69–81 (2014). https://doi.org/10.14810/ijscmc.2014.3405

    Article  Google Scholar 

  38. The mathlib Community.: The Lean Mathematical Library. In: Proceedings of the 9th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2020, pp. 367–381. ACM (2020). https://doi.org/10.1145/3372885.3373824

  39. van der Waerden, B.L.: Algebra, vol. I. Springer, New York (1991)

    Book  Google Scholar 

  40. Walther, C.: A Machine Assisted Proof of the Chinese Remainder Theorem. Technical Report VFR 18/03, FB Informatik, Technische Universität Darmstadt (2018)

  41. Zhang, H., Hua, X.: Proving the Chinese remainder theorem by the cover set induction. In: 11th International Conference on Automated Deduction CADE. Lecture Notes in Computer Science, vol. 607, pp. 431–445. Springer (1992). https://doi.org/10.1007/3-540-55602-8_182

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio Ayala-Rincón.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research funded by FAPDF Grant Ed. DE 03/2018, 135/2019. Fourth author partially funded by CNPq Grant 07672/2017-4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Lima, T.A., Galdino, A.L., Avelar, A.B. et al. Formalization of Ring Theory in PVS. J Autom Reasoning 65, 1231–1263 (2021). https://doi.org/10.1007/s10817-021-09593-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10817-021-09593-0

Keywords

Navigation