Skip to main content
Log in

Early arrhythmia prediction based on Hurst index and ECG prediction using robust LMS adaptive filter

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

This paper aims to early arrhythmia prediction and investigate the use of robust adaptive filters to forecast the ECG signal. Different robust adaptive filters are examined for ECG prediction. Features in time and time-frequency domains have been extracted, and the Hurst index has been calculated in two domains. The performance of the SVM, KNN, and the ensemble of LogitBoost trees for model construction has been examined for detecting the occurrence of an arrhythmia in the predicted ECGs in an inter-patient scenario. Results show that pseudo-Huber adaptive filter is the best choice for ECG prediction. Also, classification performance measures besides the McNemar test show that the predicted signal is suitable to use for early arrhythmia detection with accuracy, precision, sensitivity, and specificity of at least 98\(\%\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. https://physionet.org/content/mitdb/1.0.0/.

References

  1. Yang, H., Pan, Z., Tao, Q.: Robust and adaptive online time series prediction with long short-term memory. Comput. Intell. Neurosci. 2017, 9478952 (2017)

    Google Scholar 

  2. Cepulionis, P., Lukoseviciute, K.: Electrocardiogram time series forecasting and optimization using ant colony optimization algorithm. J. Math. Models Eng. (MME) 2(1), 69–78 (2016)

    Google Scholar 

  3. Abbas, R.: Electrocardiogram signal forecasting using iterated and direct method based on artificial neural network. J. Appl. Emerg. Sci. 1(1), 72–78 (2004)

    Google Scholar 

  4. Kansal, S., Bansod, P.P., Kumar, A.: Multivariate autoregressive model for ECG signal forecasting. Int. J. Multivar. Data Anal. 1(2), 124–139 (2017)

    Article  Google Scholar 

  5. Sun, Z.-G., Lei, Y., Wang, J., Liu, Q., Tan, Q.-Q.: An ECG signal analysis and prediction method combined with vmd and neural network. In: 2017 7th IEEE International Conference on Electronics Information and Emergency Communication (ICEIEC), pp. 199–202. IEEE (2017)

  6. Sun, Z., Wang, Q., Xue, Q., Liu, Q., Tan, Q.: Data prediction of ECG based on phase space reconstruction and neural network. In: 2018 8th International Conference on Electronics Information and Emergency Communication (ICEIEC), pp. 162–165. IEEE (2018)

  7. Sayed, A.H.: Fundamentals of Adaptive Filtering. Wiley, Hoboken (2003)

    Google Scholar 

  8. Walach, E., Widrow, B.: The least mean fourth (LMF) adaptive algorithm and its family. IEEE Trans. Inf. Theory 30(2), 275–283 (1984)

    Article  Google Scholar 

  9. Cho, S.H., Kim, S.D.: Adaptive filters based on the high order error statistics. In: Proceedings of APCCAS’96-Asia Pacific Conference on Circuits and Systems, pp. 109–112. IEEE (1996)

  10. Mathews, V., Cho, S.: Improved convergence analysis of stochastic gradient adaptive filters using the sign algorithm. IEEE Trans. Acoust. Speech Signal Process. 35(4), 450–454 (1987)

    Article  Google Scholar 

  11. Zhao, H., Yu, Y., Gao, S., Zeng, X., He, Z.: A new normalized LMAT algorithm and its performance analysis. Signal Process. 105, 399–409 (2014)

    Article  Google Scholar 

  12. Eweda, E.: Global stabilization of the least mean fourth algorithm. IEEE Trans. Signal Process. 60(3), 1473–1477 (2012)

    Article  MathSciNet  Google Scholar 

  13. Zerguine, A.: Convergence and steady-state analysis of the normalized least mean fourth algorithm. Digital Signal Process. 17(1), 17–31 (2007)

    Article  Google Scholar 

  14. Costa, M.H., Bermudez, J.C.: An improved model for the normalized LMS algorithm with gaussian inputs and large number of coefficients. In: 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol. 2, pp. II–1385. IEEE (2002)

  15. Thakor, N.V., Zhu, Y.-S.: Applications of adaptive filtering to ECG analysis: noise cancellation and arrhythmia detection. IEEE Trans. Biomed. Eng. 38(8), 785–794 (1991)

    Article  Google Scholar 

  16. Lu, G., Brittain, J.-S., Holland, P., Yianni, J., Green, A.L., Stein, J.F., Aziz, T.Z., Wang, S.: Removing ECG noise from surface EMG signals using adaptive filtering. Neurosci. Lett. 462(1), 14–19 (2009)

    Article  Google Scholar 

  17. Lee, J.-W., Lee, G.-K.: Design of an adaptive filter with a dynamic structure for ECG signal processing. Int. J. Control Autom. Syst. 3(1), 137–142 (2005)

    Google Scholar 

  18. Rakshit, M., Das, S.: An efficient ECG denoising methodology using empirical mode decomposition and adaptive switching mean filter. Biomed. Signal Process. Control 40, 140–148 (2018)

    Article  Google Scholar 

  19. Li, Z., Derksen, H., Gryak, J., Jiang, C., Gao, Z., Zhang, W., Ghanbari, H., Gunaratne, P., Najarian, K.: Prediction of cardiac arrhythmia using deterministic probabilistic finite-state automata. Biomed. Signal Process. Control 63, 102–200 (2021)

    Google Scholar 

  20. Fujita, H., Cimr, D.: Decision support system for arrhythmia prediction using convolutional neural network structure without preprocessing. Appl. Intell. 49(9), 3383–3391 (2019)

    Article  Google Scholar 

  21. Ghosh, S.K., Tripathy, R.K., Paternina, M.R., Arrieta, J.J., Zamora-Mendez, A., Naik, G.R.: Detection of atrial fibrillation from single lead ECG signal using multirate cosine filter bank and deep neural network. J. Med. Syst. 44, 1–15 (2020)

    Article  Google Scholar 

  22. Mandala, S., Di Cai, T., Sunar, M.S.: Ecg-based prediction algorithm for imminent malignant ventricular arrhythmias using decision tree. PLoS ONE 15(5), e0231635 (2020)

    Article  Google Scholar 

  23. Ebrahimi, Z., Loni, M., Daneshtalab, M., Gharehbaghi, A.: A review on deep learning methods for ECG arrhythmia classification. Expert Syst. Appl. X, 100033 (2020)

    Google Scholar 

  24. Alfaras, M., Soriano, M.C., Ortín, S.: A fast machine learning model for ECG-based heartbeat classification and arrhythmia detection. Front. Phys. 7, 103 (2019)

    Article  Google Scholar 

  25. Azemi, A., Sabzevari, V.R., Khademi, M., Gholizade, H., Kiani, A., Dastgheib, Z.S.: Intelligent arrhythmia detection and classification using ICA. In: International Conference of the IEEE Engineering in Medicine and Biology Society, Vol. 2006, pp 2163–2166. IEEE (2006)

  26. Tripathy, R.K., Zamora-Mendez, A., De la O Serna, J.A., Paternina, M.R.A., Arrieta, J.G., Naik, G.R.: Detection of life threatening ventricular arrhythmia using digital Taylor Fourier transform. Front. Pysiol. 9, 722 (2018)

    Article  Google Scholar 

  27. Kandala, R.N., Dhuli, R., Pławiak, P., Naik, G.R., Moeinzadeh, H., Gargiulo, G.D., Gunnam, S.: Towards real-time heartbeat classification: evaluation of nonlinear morphological features and voting method. Sensors 19(23), 5079 (2019)

    Article  Google Scholar 

  28. Lee, H., Shin, S.-Y., Seo, M., Nam, G.-B., Joo, S.: Prediction of ventricular tachycardia one hour before occurrence using artificial neural networks. Sci. Rep. 6, 32390 (2016)

    Article  Google Scholar 

  29. Narin, A., Isler, Y., Ozer, M., Perc, M.: Early prediction of paroxysmal atrial fibrillation based on short-term heart rate variability. Phys. A Stat. Mech. Appl. 509, 56–65 (2018)

    Article  MathSciNet  Google Scholar 

  30. Xiong, K., Wang, S.: Robust least mean logarithmic square adaptive filtering algorithms. J. Franklin Inst. 356(1), 654–674 (2019)

    Article  MathSciNet  Google Scholar 

  31. Singh, A., Principe, J.C.: Using correntropy as a cost function in linear adaptive filters. In: 2009 International Joint Conference on Neural Networks, pp. 2950–2955. IEEE (2009)

  32. Ashkezari-Toussi, S., Sadoghi-Yazdi, H.: Robust diffusion LMS over adaptive networks. Signal Process. 158, 201–209 (2019)

    Article  Google Scholar 

  33. Sun, Y., Chan, K.L., Krishnan, S.M.: Life-threatening ventricular arrhythmia recognition by nonlinear descriptor. BioMed. Eng. OnLine 4(1), 6 (2005)

    Article  Google Scholar 

  34. García-Fernández, A., Roldán, V., Marín, F.: Strategies for prediction and early detection of atrial fibrillation: present and future. EP Europace 19(4), 515–517 (2016). https://doi.org/10.1093/europace/euw131

    Article  Google Scholar 

  35. Roychoudhury, S., Ghalwash, M.F., Obradovic, Z.: False alarm suppression in early prediction of cardiac arrhythmia. In: 2015 IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE), pp. 1–6. IEEE (2015)

  36. Friedman, J., Hastie, T., Tibshirani, R., et al.: Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). Ann. Stat. 28(2), 337–407 (2000)

    Article  Google Scholar 

  37. Koul, A., Becchio, C., Cavallo, A.: Cross-validation approaches for replicability in psychology. Front. Psychol. 9, 1117 (2018)

    Article  Google Scholar 

  38. Lachenbruch, P.A.: McNemar test. Statistics Reference Online, Wiley StatsRef (2014)

  39. De Chazal, P., O’Dwyer, M., Reilly, R.B.: Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Trans. Biomed. Eng. 51(7), 1196–1206 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Reza Sabzevari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashkezari-Toussi, S., Sabzevari, V.R. Early arrhythmia prediction based on Hurst index and ECG prediction using robust LMS adaptive filter. SIViP 15, 1813–1820 (2021). https://doi.org/10.1007/s11760-021-01918-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-021-01918-1

Keywords

Navigation