Skip to main content
Log in

Time–Frequency Localization for the Fractional Fourier Transform in Signal Processing and Uncertainty Principles

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The fractional Fourier transform (FrFT) is a generalization of the usual Fourier transform. The aim of this paper is to show the compression of sound signal in FrFT domain and to prove the qualitative and quantitative uncertainty principles for the FrFT. The first of these results consists the Hardy’s and an \(L^p-L^q\) version of Miyachi’s theorems for the FrFT, which estimates of decay of two fractional Fourier transforms \(F_{\alpha }(f)\) and \(F_{\gamma } (f)\), with \(\gamma -\alpha \ne n\pi , \forall n\in \mathbb {Z}\). The second result consists an extension of Faris’s local uncertainty principle which states that if a non zero function \(F_{\alpha }(f) \in L^2(\mathbb {R})\) is highly localized near a single point then \(F_{\gamma } (f)\) cannot be concentrated in a set of finite measure with \(\gamma -\alpha \ne n\pi , \forall n\in \mathbb {Z}\). From our results we deduce the usual uncertainty principles for the fractional Fourier transform which states these theorems between a function f and its fractional Fourier transform \(F_{\gamma }(f)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of Data and Materials

The datasets analysed during the current study are available from the corresponding author on requested. The corresponding author had full access to all the data (Matlab algorithm, results) in the study and takes responsability for the integrity of the data and the accuracy of the data analysis.

References

  1. L.B. Almeida, The fractional Fourier transform and time–frequency representations. IEEE Trans. Signal Process. 42(11), 3084–3091 (1994)

    Article  Google Scholar 

  2. A. Averbuch, R.R. Coifman, D.L. Donoho, M. Eladd, M. Israeli, Fast and accurate polar Fourier transform. Appl. Comput. Harmon. Anal. 21, 145–167 (2006)

    Article  MathSciNet  Google Scholar 

  3. A. Bonami, B. Demange, P. Jaming, Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms. Rev. Mat. Iberoam. 19, 23–55 (2003)

    Article  MathSciNet  Google Scholar 

  4. F. Chouchenea, R. Daherb, T. Kawazoec, H. Mejjaolid, Miyachi’s theorem for the Dunkl transform. Integr. Transform. Spec. Funct. 22(3), 167–173 (2011)

    Article  MathSciNet  Google Scholar 

  5. M. Cowling, J.F. Price, Generalizations of Heisenberg’s Inequality , Lecture Notes in Mathematics, vol. 992 (Springer, 1983), pp. 443–449

  6. R. Daher, On the theorems of Hardy and Miyachi theorem for the Jacobi–Dunkl transform. Integr. Transform. Spec. Funct. 18(5), 305–311 (2007)

    Article  MathSciNet  Google Scholar 

  7. R. Daher, T. Kawazoe, Generalized Hardy’s theorem for the Jacobi transform. Math. J. 36(3), 331–337 (2006)

    MathSciNet  MATH  Google Scholar 

  8. D.L. Donoho, P.B. Stark, Uncertainty principles and signal recovery. SIAM J. Appl. Math. 49, 906–931 (1989)

    Article  MathSciNet  Google Scholar 

  9. S. Ghazouani, F. Bouzeffour, Heisenberg uncertainty principle for a fractional power of the Dunkl transform on the real line. J. Comput. Appl. Math. 294, 151–176 (2016)

    Article  MathSciNet  Google Scholar 

  10. S. Hamem, L. Kamoun, S. Negzaoui, Cowling-Price type theorem related to Bessel–Struve transform. Arab. J. Math. Sci. 19(2), 187–198 (2013)

    MathSciNet  MATH  Google Scholar 

  11. G.H. Hardy, A theorem concerning Fourier transform. J. Lond. Math. Soc. 8, 227–231 (1933)

    Article  MathSciNet  Google Scholar 

  12. V. Havin, B. Jöricke, The Uncertainty Principle in Harmonic Analysis (Springer, Berlin, 1994)

    Book  Google Scholar 

  13. W. Heisenberg, Uber den anschaulichen Inhalt der quantentheo-retischen Kinematik und Mechanik. Z. Phys. 43, 172–198 (1927)

    Article  Google Scholar 

  14. Ph. Jaming, Uniqueness results for the phase retrieval problem of fractional Fourier transform of variable order. Appl. Comput. Harmon. Anal. 37, 413–441 (2014)

  15. A. Miyachi, A Generalization of Theorem of Hardy (Shizuoka-Ken, Japon, Harmonic Analysis Seminar Held at Izunagaoka (1997), pp. 44–51

  16. A.C. Mcbride, F.H. Kerr, On Namias’s fractional Fourier transforms. IMA J. Appl. Math. 39, 159–175 (1987)

    Article  MathSciNet  Google Scholar 

  17. D. Mendlovic, H.M. Ozaktas, Fractional Fourier transforms and their optical implementation: II. J. Opt. Soc. Am. A 10, 25222531 (1993)

    Article  Google Scholar 

  18. M.A. Manko, Fractional Fourier transform in information processing, tomography of optical signal, and Green function of harmonic oscillator. J. Russ. Laser Res. 20, 226–238 (1999)

    Article  Google Scholar 

  19. V. Namias, The fractional order Fourier transformandits application to quantum mechanics. J. Inst. Math. Appl. 25(3), 241–265 (1980)

    Article  MathSciNet  Google Scholar 

  20. H.M. Ozaktas, Z. Zalevsky, M.A. Kutay, The Fractional Fourier Transform with Applications in Optics and Signal Processing (Wiley, New York, 2001)

    Google Scholar 

  21. R.S. Pathak, A. Prasad, M. Kumar, Fractional Fourier transform of tempered distributions and generalized pseudo-differential operator. J. Pseudo Differ. Oper. Appl. 3, 239–254 (2012)

    Article  MathSciNet  Google Scholar 

  22. J.F. Price, Inequalities and local uncertainty principles. J. Math. Phys. 24, 1711–1714 (1983)

    Article  MathSciNet  Google Scholar 

  23. J.F. Price, Sharp local uncertainty principles. Studia Math. 85, 37–45 (1987)

    Article  Google Scholar 

  24. L. Qi, R. Tao, S. Zhou, Y. Wang, Detection and parameter estimation of multicomponent LFM signal based on the fractional Fourier transform. Sci. China Ser. F Inf. Sci. 47, 184–198 (2004)

    Article  MathSciNet  Google Scholar 

  25. E. Sejdic, I. Djurovic, L. Stankovic, Fractional Fourier transform as a signal processing tool: an overview of recent developments. Signal Process. 91, 1351–1369 (2011)

    Article  Google Scholar 

  26. A. Sitaram, M. Sundari, An analogue of Hardy’s theorem for very rapidly decreasing functions on semi-simple Lie groups. Pac. J. Math. 177, 187–200 (1997)

    Article  MathSciNet  Google Scholar 

  27. A. Torre, The Fractional Fourier Transform: Theory and Applications (Tsinghua Univ. Press, Beijing, 2004)

    MATH  Google Scholar 

  28. H. Wang, H. Ma, MIMO OFDM systems based on the optimal fractional Fourier transform. Wirel. Pers. Commun. 55(2), 265–272 (2010)

    Article  Google Scholar 

  29. Z. Yin, W. Chen, A new LFM-signal detector based on fractional Fourier transform. EURASIP J. Adv. Signal Process. 2010, 876282 (2010)

  30. A.I. Zayed, Fractional Fourier transform of generalized functions. Integr. Transform. Spec. Funct. 7(3–4), 299–312 (1998)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referee for their valuable comments and suggestions which improved the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaineb Aloui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (au 22 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aloui, Z., Brahim, K. Time–Frequency Localization for the Fractional Fourier Transform in Signal Processing and Uncertainty Principles. Circuits Syst Signal Process 40, 4924–4945 (2021). https://doi.org/10.1007/s00034-021-01698-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-021-01698-6

Keywords

Navigation