Skip to main content

Advertisement

Log in

Tolerant semiaquatic bugs species (Heteroptera: Gerromorpha) are associated to pasture and conventional logging in the Eastern Amazon

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

A Correction to this article was published on 14 June 2021

This article has been updated

Abstract

The aim of the present study was to evaluate how environments modified by conventional logging (CL), reduced-impacted logging (RIL), and pastures (PST) surrounding streams affect environmental characteristics and semiaquatic bugs assemblages (Gerromorpha), in the eastern Amazon. The following hypotheses were tested: (i) environmental heterogeneity in streams is lower in areas with more intensive practices (e.g. CL and PST); (ii) species richness and abundance are also lower in streams located in areas with more intensive practices, while more preserved areas have higher richness and abundance; and (iii) species composition shall be affected by changes in forestry practices, thus causing differences between treatments according to species tolerances. We observed that although PST and CL have higher environmental heterogeneity and alpha diversity, respectively, these treatments are associated with the presence of tolerant species and are different from the forest regarding composition (species identity) and species distribution pattern. On the other hand, forest and RIL areas did not have differences regarding habitat characteristics, environmental heterogeneity, alpha diversity, composition and species distribution pattern. This indicates that RIL can maintain a considerable part of habitat integrity and Gerromorpha assemblage composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

adapted from Peck et al. 2006). The letters marked with (K’, F’, A’) indicate sections where physico-chemical variables were measured. b Transect detail: Detail of the sampling design for Gerromorpha, where sections are subdivided for the active sampling to be conducted

Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that supports the findings of this study are available in the supplementary material of this article or may be requested from authors.

Change history

References

  • Almeida SS, Silva ASL, Silva ICB (2009) Cobertura vegetal. In: Monteiro MA, Coelho MCN, Barbosa EJS (eds) Atlas Socioambiental: Municípios De Tomé Açú, Aurora Do Pará, Ipixuna Do Pará Paragominas E Ulianópolis. Naea, Belém, PA, pp 112–124

    Google Scholar 

  • Andersen NM (1982) The semiaquatic bugs (Hemiptera, Gerrmorpha), phylogeny, adaptations, biogeography and classification. Entomonograph 3:1–455

    Google Scholar 

  • Andersen NM, Weir TA (2004) Australian water bugs: their biology and identifiation (Hemiptera-Heteroptera, Gerromorpha & Nepomorpha). Apollo Books, Melbourne

    Book  Google Scholar 

  • Anderson MJ (2006) Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62:245–253

    Article  PubMed  Google Scholar 

  • Arantes CC, Winemiller KO, Petrere M, Castello L, Hess LL, Freitas CEC (2018) Relationships between forest cover and fish diversity in the Amazon River Floodplain. J Appl Ecol 55:386–395

    Article  Google Scholar 

  • Asner GP, Broabdent EN, Oliveira PJC, Keller M, Knapp DE, Silva JNM (2006) Condition and fate of logged forests in the Brazilian Amazon. PNAS 103:12947–12950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bray JR, Curtis JT (1957) An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr 27:326–349

    Article  Google Scholar 

  • Benstead JP, Douglas MM, Pringle CM (2003) Relationships of stream invertebrate communities to deforestation in Eastern Madagascar. Ecol Appl 13:1473–1490

    Article  Google Scholar 

  • Broabdent E, Asner G, Keller M, Knapp D, Oliveira P, Silva J (2008) Forest fragmentation and edge effects from deforestation and selective logging in the Brazilian Amazon. Biol Conserv 141:1745–1757

    Article  Google Scholar 

  • Calenge C, Dufour AB, Maillard D (2005) K-select analysis: a new method to analyse habitat selection in radio-tracking studies. Ecol Model 186:143–153. https://doi.org/10.1016/j.ecolmodel.2004.12.005

    Article  Google Scholar 

  • Calvao LB, Nogueira DS, Montag LFA, Juen L (2016) Are odonata communities impacted by conventional or reduced impact logging. Forest Ecol Manag 382:143–150

    Article  Google Scholar 

  • Cardoso MN, Calvao LB, Montag LFA, Godoy BS, Juen L (2018) Reducing the deleterious effects logging on ephemeroptera commnuities through reduced impact management. Hydrobiologia. https://doi.org/10.1007/S10750-018-3705-X

    Article  Google Scholar 

  • Carvalho FG, Roque FO, Barbosa L, Montag LFA, Juen L (2018) Oil palm plantation is not a suitable environment for most forest specialist species of Odonata in Amazonia. Anim Conserv 21:526–533

    Article  Google Scholar 

  • Cosset CP, Edwards DP (2017) Effects of restoring logged tropical forest on avian phylogenetic and functional diversity. Ecol Appl 27:1932–1945

    Article  PubMed  Google Scholar 

  • Cunha EJ, Juen L (2017) Impacts of oil palm plantations on changes in environmental heterogeneity and heteroptera (Gerromorpha And Nepomorpha) diversity. J Insect Conserv 21:111–119

    Article  Google Scholar 

  • Cunha EJ, Montag LFA, Juen L (2015) Oil palm crops effects on environmental integrity of Amazonian streams and Heteropteran (Hemiptera) species diversity. Ecol Indic 52:422–429

    Article  Google Scholar 

  • Dala-Corte RB, Melo AS, Siqueira T, Bini LM, Martins RT, Cunico AM et al (2020) Limiares de biodiversidade de água doce em resposta à perda de vegetação ribeirinha na região Neotropical. J Appl Ecol 57:1391–1402

    Google Scholar 

  • Deacon C, Samways M, Pryke JS (2019) Aquatic insects decline in abundance and occupy low-quality artificial habitats to survive hydrological droughts. Freshw Biol 64:1643–1654

    Article  Google Scholar 

  • De Cáceres M, Legendre P, Moretti M (2010) Improving indicators species analysis by combining groups of sites. Oikos 119:1674–1984

    Article  Google Scholar 

  • De Castro DMP, Dolédec S, Callisto M (2018) Land cover disturbance homogenizes aquatic insect functional structure in neotropical savanna streams. Ecol Indic 84:573–582

    Article  Google Scholar 

  • De Castro Solar RR, Barlow J, Andersen AN, Schoereder JH, Berenguer E, Ferreira JN, Gardner TA (2016) Biodiversity consequences of land-use change and forest disturbance in the Amazon: a multi-scale assessment using ant communities. Biol Conserv 197:98–107

    Article  Google Scholar 

  • Dias-Silva K, Cabette HSR, Juen L, De Marco P (2010) The influence of habitat integrity and physical-chemical water variables on the structure of aquatic ad semi-aquatic Heteroptera. Zoologia 27:918–930

    Article  Google Scholar 

  • Dolédec S, Chessel D, Gimaret-Carpentier CME (2000) Niche separation in community analysis: a new method. Ecology 81:2914–2927

    Article  Google Scholar 

  • Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20

    Article  Google Scholar 

  • Dray S, Bauman D, Blanchet GM, Borcard D, Sylvie C, Guenard G, Jombart T, Larocque G, Legendre P, Madi N, Wagner HH (2018) Adespatial: multivariate multiscale spatial analysis. https://cran.r-project.org/package=adespatial. Accessed 12 Dec 2018

  • Duflot R, Georges R, Ernoult A, Aviron S, Burel F (2014) Landscape heterogeneity as an ecological filter of species traits. Acta Oecol 56:19–26

    Article  Google Scholar 

  • Dufrene M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366. https://doi.org/10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2

    Article  Google Scholar 

  • Fearnside PM (2002) Greenhouse gas emissions from a hydroelectric reservoir (Brazil’s Tucuruí dam) and the energy policy implications. Water Air Soil Poll 133:69–96

    Article  CAS  Google Scholar 

  • Floriano CFB, Paladini A, Cavichioli RR (2016) Systematics of the South American species of Cylindrostethus Mayr, 1865 (Hemiptera: Heteroptera: Gerridae), with a new species from Amazonian Brazil and Peru. Invertebr Syst 30:431–462

    Article  Google Scholar 

  • Floriano CFB, Moreira FFF, Bispo PC (2017) South American species of Stridulivelia (Hemiptera: Heteroptera: Veliidae): identification key, diagnoses, illustrations and updated distribution. Proc Entomol Soc Wash 199:24–46

    Article  Google Scholar 

  • Goulart M, De Melo AL, Callisto M (2002) Qual a relação entre variáveis ambientais e a diversidade de heterópteos aquáticos em nascentes de altitude? Bios 10:63–76

    Google Scholar 

  • Guimarães TFS (2013) Heteroptera Aquáticos E Semi-Aquáticos Como Indicadores De Qualidade Ambiental Na Fazenda Baía Grande, Pantanal De Miranda-Aquidauana, Mato Grosso Do Sul. https://repositorio.pgsskroton.com//handle/123456789/3817.Pdf. Accessed 18 Sept 2020

  • Guterres AP, Cunha EJ, Godoy BS, Silva RR, Juen L (2020) Co-occurrence patterns and morphological similarity of semiaquatic bugs (Hemiptera: Gerromorpha) in streams of Eastern Amazonia. Ecol Entomol 45:155–166. https://doi.org/10.1111/een.12785

    Article  Google Scholar 

  • Hamada N, Nessimian JL, Querino RB (2014) Insetos aquáticos na Amazônia brasileira: taxonomia, biologia e ecologia. Editora do INPA, Manaus

    Google Scholar 

  • Hawkins CP, Mykrä H, Oksanen J, Vander Laan JJ (2015) Environmental disturbance can increase beta diversity of stream macroinvertebrate assemblages. Glob Ecol Biogeogr 24:483–494

    Article  Google Scholar 

  • Hungerford HB (1949) The corixidae of the western hemisphere (Hemiptera). Ann Entomol Soc Am 42:1–47

    Google Scholar 

  • Hutchinson GE (1959) Homage to Santa Rosalia or why are there so many kinds of animals? Am Nat 93:145–159

    Article  Google Scholar 

  • Juen L, Cunha EJ, Carvalho FG, Ferreira MC, Begot TO, Andrade AL, Shimano Y, Leão H, Pompeu OS, Montag LFA (2016) Effects of oil palm plantations on the habitat structure and biota of streams in Eastern Amazon. River Res Appl 32:2081–2094

    Article  Google Scholar 

  • Karasiewicz S, Karasiewicz MS (2017). Package ‘subniche’. https://Cran.R-project.org/package=subniche. Accessed 18 Sept 2020

  • Kaufmann PR, Levine P, Robison EG, Seeliger C, Peck DV (1999) Quantifying physical habitat in wadeable streams. Environmental Protection, Washington, DC

    Google Scholar 

  • Kenaga EE (1941) The genus telmatometra bergroth (Hemiptera-Gerridae). Univ Kansas SB 27:169–183

    Google Scholar 

  • Law 6.938/1981 Política Nacional Do Meio Ambiente Brasil. Presidência Da República Casa Civil Subchefia Para Assuntos Jurídicos. Constituição Da República Federativa Do Brasil. http://www.Planalto.Gov.Br/Ccivil_03/Constituicao/Constituicao.Htm. Accessed 20 July 2018

  • Leão H, Siqueira T, Torres NR, Montag ALF (2020) Ecological uniqueness of fish communities from streams in modified landscapes of Eastern Amazonia. Ecol Indic 111:106039

    Article  Google Scholar 

  • Lebrija-Trejos E, Pérez-García EA, Meave JA, Bongers F, Poorter L (2010) Functional traits and environmental filtering drive community assembly in a species-rich tropical system. Ecology 91:386–398

    Article  PubMed  Google Scholar 

  • Lees AC, Peres CA (2008) Conservation value of remnant riparian forest corridors of varying quality for Amazonian birds and mammals. Conserv Biol 22:439–449

    Article  PubMed  Google Scholar 

  • Legendre P, Anderson MJ (1999) Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol Monogr 69:1–24

    Article  Google Scholar 

  • Legendre P, Legendre L (2012) Numerical ecology. Elsevier, New York

    Google Scholar 

  • Leitão RP, Zuanon J, Villéger S, Williams SE, Baraloto C, Fortunel C, Mendonça FP, Mouillot D (2016) Rare species contribute disproportionately to the functional structure of species assemblages. Proc Biol Sci. https://doi.org/10.1098/rspb.2016.0084

    Article  PubMed  PubMed Central  Google Scholar 

  • Leitão RP, Zuanon J, Mouillot D, Leal CG, Hughes RM, Kaufmann PR, Villéger S, Pompeu PS, Kasper D, de Paula FR, Ferraz SFB, Gardner TA (2018) Disentangling the pathways of land use impacts on the functional structure of fish assemblages in Amazon streams. Ecography. https://doi.org/10.1111/ecog.02845

    Article  PubMed  PubMed Central  Google Scholar 

  • Magalhães OM, Moreira FFF, Galvão C (2016) A new species of Rhagovelia Mayr, 1865 (Hemiptera: Heteroptera: Veliidae) form Pará State, with Na updated key to Brazilian species of the Robusta Group. Zootaxa 4171:586–594

    Article  PubMed  Google Scholar 

  • Manly BFJ (1991) Randomization and monte carlo methods in biology. Chapman & Hall, London

    Book  Google Scholar 

  • Mensing DM, Galatowitsch SM, Tester JR (1998) Anthropogenic effects on the biodiversity of riparian wetlands of a northern temperate landscape. Aust J Environ Manage 53:349–377

    Google Scholar 

  • Merritt RW, Cummins KW (1984) An introduction to the aquatic insects of North America. Kendall/Hunt Publishing Company, Dubuque

    Google Scholar 

  • Miles L, Grainger A, Phillips O (2004) The impact of global climate change on tropical forest biodiversity in Amazonia. Glob Ecol Biogeogr 13:553–565

    Article  Google Scholar 

  • Monteiro MA (2005) Meio século de Mineração Industrial na Amazônia e suas Implicações para o Desenvolvimento Regional. Estud Av 19:187–207

    Article  Google Scholar 

  • Moreira FFF, Alecrim PV, RibeiroNessimian JRIJL (2011) Identification key to the gerridae (Insecta: Heteroptera: Gerromorpha) from The Amazon River Floodplain, Brazil, with new records for the Brazilian Amazon. Zoologia 28:269–279

    Article  Google Scholar 

  • Lima AMM, Pontes XP (2012) O Comportamento Biológico da Bacia do Rio Capim-Pará e sua Influência como condicionante pa paisagem. RBGF 1:127–142

    Article  Google Scholar 

  • Miller RL, Bradfort WL, Peters NE (1988) Specific conductance: theoretical considerations and application to analytical quality control. US. Geological Survey Water-Supply Paper, US Government Printing Office, Washington DC

    Google Scholar 

  • Navarrete D, Stich S, Aragão LEOC, Pedroni L, Duque A (2016) Conversion from forests to pasture in the colomb ian Amazon leads to differences indead wood dynamics depending on land managemente practices. Glob Change Biol 22:3503–3517

    Article  Google Scholar 

  • Nepstad DC, Stickler CM, Soares-Filho B, Merry F (2008) Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point. Philos Trans R Soc B 363:1737–1746

    Article  Google Scholar 

  • Neres-Lima V, Machado-Silva F, Baptista DF, Oliveira RBS, Andrade PM, Oliveira AF, Sasada-Sato CY, Silva Junior EF, Feijó-Lima R, Camargo RAPB, Moulton TP (2017) Allochthonous and autochthonous carbon flows in food webs of tropical forest streams. Freshw Biol 62:1012–1023

    Article  CAS  Google Scholar 

  • Nieser N (1994) A new species and a new status in neogerris matsumura (Heteroptera: Gerridae) with a key to american species. Storkia 3:27–37

    Google Scholar 

  • Nogueira DS, Calvao LB, Montag LFA, Juen L, De-Marco P (2016) Little effects of reduced-impact logging on insect communities in Eastern Amazonia. Environ Monit Assess 188:1–20

    Article  Google Scholar 

  • Oknansen J, Blanchet FG, Friendly M, Kindt R, Legendre P, Mcglinn D, Minchin PR, O’hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2016) Vegan: community ecology package. R Package Version 2. 4–0. https://Cran.R-project.org/Package=Vegan. Accessed 20 June 2018

  • Olden JD, Poff NL, Douglas MR, Douglas ME, Fausch KD (2004) Ecological and evolutionary consequences of biotic homogenization. Trends Ecol Evol. https://doi.org/10.1016/j.tree.2003.09.010

    Article  PubMed  Google Scholar 

  • Peck DV, Herlihy AT, Hill BH, Hughes RM, Kaufmann PR, Klemm DJ, Lazorchak JM, Mccormick FH, Peterson SA, Ringold PL, Magee T, Cappaert MR (2006) Environmental monitoring and assessment program-surface waters: Western Pilot Study field operations manual for wadeable streams. Environmental monitoring and assessment program: field operations manual for wadeable streams. Epa 600/R-06/003. US Environemental Protection Agency, Office of Research and Development, Washington, DC.

  • Pedrinho A, Mendes LW, Merloti LF, da Fonseca MDC, Cannavan FDS, Tsai SM (2019) Forest-to-pasture conversion and recovery based on assessment of microbial communities in Eastern Amazon rainforest. FEMS Microbiol Ecol 95:fiy236. https://doi.org/10.1093/femsec/fiy236

    Article  CAS  PubMed  Google Scholar 

  • Peel MC, Finlayson BL, Mcmahon TA (2007) Updated world map of the Köppen-Geiger climate classifcation. HESS 11:1633–1644

    Google Scholar 

  • Petsch DK (2016) Causes and consequences of biotic homogenization in freshwater ecosystems. Int Rev Hydrobiol 101:113–122

    Article  Google Scholar 

  • Pinto A, Amaral P, Souza-Junior C, Veríssimo A, Salomão R, Gomes G, Balieiro C (2009) Diagnóstico Socioeconômico E Florestal Do Município De Paragominas. Relatório Técnico. Instituto Do Homem E Meio Ambiente Da Amazônia- Imazon, Belém PA, p 65

    Google Scholar 

  • Qin Y, XiaoX DJ, Zhang Y, Wu X, Shimabukuro Y, Arai E, Biradar C, Wang J, Zou W, Liu F, Shi Z, Doughty R, Moore B (2019) Improved estimates of forest cover and loss in the Brazilian Amazon in 2000–2017. Nature 2:764–772

    Google Scholar 

  • R Development Core Team (2020) R: a language and environment for statistical computing. R Foundation For Statistical Computing, Vienna

    Google Scholar 

  • Resh VH (2008) Which group is best? Attributes of different biological assemblages used in freshwater biomonitoring programs. Environ Monit Assess 138:131–138

    Article  PubMed  Google Scholar 

  • Ricotta C, Podani J (2017) On some properties of the Bray-Curtis dissimilarity and their ecological meaning. Ecol Complex 31:201–205

    Article  Google Scholar 

  • Ríos-Touma BP, Acosta R, Fornells NP (2014) The Andean Biotic Index (ABI): revised tolerance to pollution values for macroinvertebrate families and index performance evaluation. Rev Biol Trop 62:249–273

    Article  PubMed  Google Scholar 

  • Sabogal C, Silva JNM, Zweede J, Pereira-Junior R, Barreto P, Guerreiro CA (2000) Diretrizes Técnicas Para Exloração De Impacto Reduzido Em Operações Florestais De Terra Firme Na Amazônia Brasileira. Embrapa Amazônia Oriental, Belém

    Google Scholar 

  • Shaw JG (1933) A Study Of The Genus Brachymetra (Hemiptera: Gerridae), vol 21. University of Kansas, Kansas, pp 221–233

    Google Scholar 

  • Siberchicot A, Julien-Laferrière A, Dufour AB, Thioulouse J, Dray S (2017) Adegraphics: an S4 lattice-based package for the representation of multivariate data. R J 9:1–15

    Article  Google Scholar 

  • Taylor SJ, McPherson JE (2006) Gerromorpha (Hemiptera: Heteroptera) in Southern Illinois: species assemblages and habitats. Great Lakes Entomol 39:1–26

    Google Scholar 

  • Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annu Rev Ecol Evol Syst 33:475–505

    Article  Google Scholar 

  • Wenger AS, Atkinson S, Santini T, Falinski K, Hutley N, Albert S, Horning N, Watson JEM, Mumby PJ, Jupiter SD (2018) Prever o impacto das atividades madeireiras na erosão do solo e na qualidade da água em ilhas tropicais arborizadas e íngremes. Environ Res Lett 13:1–12

    Google Scholar 

  • Zar JH (2010) Biostatistical analysis. Pearson, Hoboken

    Google Scholar 

Download references

Acknowledgements

We are grateful to 33 Forest, Cikel LTDA, and IFT Brazil for their help in field logistics. We also thank PROPESP/UFPa (Pró-Reitoria de Pesquisa e Pós-Graduação da Universidade Federal do Pará), for providing for the translation of this paper through PAPQ (Programa de Apoio à publicação qualificada) public notice 01/2018. Thanks are due to CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), for granting a PhD scholarship to APMG (process 1747544/2017-9) and to Conselho Nacional de Desenvolvimento Científico e Tecnológico (Conselho Nacional de Pesquisa—CNPq), for funding the project “Re Resilience time of aquatic communities after selective logging in Eastern Amazonia” under Universal tender 14/2011 (process 481015/2011-6) and for granting the PhD scholarship to EJC (process 165908/2014-9), and productivity scholarship to LJ (process 304710/2019-9). We also thank all the team that participated in the field data sampling.

Author information

Authors and Affiliations

Authors

Contributions

Project design: APMG, EJC. Data Collection: EJC, APMG. Data Analysis: APMG, EJC. Writing of the manuscript: APMG, EJC, LJ.

Corresponding author

Correspondence to Alana Patricia Meguy Guterres.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 44 kb)

Supplementary file2 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guterres, A.P.M., Cunha, E.J. & Juen, L. Tolerant semiaquatic bugs species (Heteroptera: Gerromorpha) are associated to pasture and conventional logging in the Eastern Amazon. J Insect Conserv 25, 555–567 (2021). https://doi.org/10.1007/s10841-021-00316-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-021-00316-9

Keywords

Navigation