Skip to main content
Log in

Improving virtual screening results with MM/GBSA and MM/PBSA rescoring

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Virtual screening (VS) based on molecular docking is one of the most useful methods in computer-aided drug design. By allowing to identify computationally putative ligands binding to the proteins of interest, VS dramatically reduces the time and expense of the development of novel therapeutics. Among the limitations of the VS approaches is the low accuracy of scoring functions implemented in docking methods for assessing binding affinity. Many such scoring functions are developed for rapid, high-throughput evaluation of binding energy of multiple conformations generated by a searching algorithm. The methods for more rigorous calculation of binding affinity calculation are generally time-consuming. Even so, in many studies more accurate methods were used for rescoring of the final poses and false-positive hits evaluation. We performed VS for three benchmark sets and used energy minimization with MM/PB(GB)SA methods (molecular mechanics energies combined with the Poisson–Boltzmann or generalized Born and surface area) to rescore binding affinities. The comparison of the area under the curve (AUC), enrichment factor (EF), and Boltzmann-enhanced discrimination of receiver operating characteristics (BEDROC) showed essential improvements in the binding energy prediction after the rescoring. Finally, we provide a program for minimization and rescoring VS results based on freely available AmberTools. The code requires just the final binding poses of the ligand as the input and can be used with any docking program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Code availability

https://github.com/sahakyanhk/iPBSA.

Abbreviations

AM1-BCC:

Austin Model 1-bond charge corrections

AUC:

Area under the curve

BEDROC:

Boltzmann-enhanced discrimination of receiver operating characteristics

EF:

Enrichment factor

FABP4:

Fatty acid binding protein 4

FEP:

Free energy perturbation

FPR:

False-positive rates

GAFF:

General Amber Force Field

KITH:

Thymidine kinase

MM/GBSA:

Molecular Mechanics generalized Born Surface Area

MM/PBSA:

Molecular Mechanics Poisson-Boltzmann Surface Area

PUR2:

Phosphoribosylglycinamide formyltransferase

ROC:

Receiver operating characteristics curve

TI:

Thermodynamic integration

TPR:

True-positive rates

VS:

Virtual screening

References

  1. Cavasotto CN, Orry AW (2007) Ligand docking and structure-based virtual screening in drug discovery. Curr Top Med Chem 7:1006–1014

    Article  CAS  Google Scholar 

  2. Madhavi Sastry G, Adzhigirey M, Day T et al (2013) Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des 27:221–234. https://doi.org/10.1007/s10822-013-9644-8

    Article  CAS  PubMed  Google Scholar 

  3. Schneider G (2010) Virtual screening: an endless staircase? Nat Rev Drug Discov 9:273–276. https://doi.org/10.1038/nrd3139

    Article  CAS  PubMed  Google Scholar 

  4. Li J, Fu A, Zhang L (2019) An overview of scoring functions used for protein–ligand interactions in molecular docking. Interdiscip Sci Comput Life Sci. https://doi.org/10.1007/s12539-019-00327-w

    Article  Google Scholar 

  5. Rastelli G, Rio AD, Degliesposti G, Sgobba M (2009) Fast and accurate predictions of binding free energies using MM-PBSA and MM-GBSA. J Comput Chem NA-NA. https://doi.org/10.1002/jcc.21372

    Article  Google Scholar 

  6. Jorgensen WL, Thomas LL (2008) Perspective on free-energy perturbation calculations for chemical equilibria. J Chem Theory Comput 4:869–876. https://doi.org/10.1021/ct800011m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Straatsma TP, Berendsen HJC (1988) Free energy of ionic hydration: analysis of a thermodynamic integration technique to evaluate free energy differences by molecular dynamics simulations. J Chem Phys 89:5876–5886. https://doi.org/10.1063/1.455539

    Article  CAS  Google Scholar 

  8. Massova I, Kollman PA (2000) Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict ligand binding. Perspect Drug Discov Des 18:113–135

    Article  CAS  Google Scholar 

  9. de Ruiter A, Oostenbrink C (2020) Advances in the calculation of binding free energies. Curr Opin Struct Biol 61:207–212

    Article  Google Scholar 

  10. Zhang X, Perez-Sanchez H, Lightstone FC (2017) A comprehensive docking and MM/GBSA rescoring study of ligand recognition upon binding antithrombin. Curr Top Med Chem 17:1631–1639

    Article  CAS  Google Scholar 

  11. Genheden S, Ryde U (2015) The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov 10:449–461. https://doi.org/10.1517/17460441.2015.1032936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Guimarães CR, Cardozo M (2008) MM-GB/SA rescoring of docking poses in structure-based lead optimization. J Chem Inf Model 48:958–970

    Article  Google Scholar 

  13. Thompson DC, Humblet C, Joseph-McCarthy D (2008) Investigation of MM-PBSA rescoring of docking poses. J Chem Inf Model 48:1081–1091

    Article  CAS  Google Scholar 

  14. Trott O, Olson AJ (2009) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem NA-NA. https://doi.org/10.1002/jcc.21334

    Article  Google Scholar 

  15. Koes DR, Baumgartner MP, Camacho CJ (2013) Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise. J Chem Inf Model 53:1893–1904

    Article  CAS  Google Scholar 

  16. Mysinger MM, Carchia M, Irwin JJ, Shoichet BK (2012) Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J Med Chem 55:6582–6594

    Article  CAS  Google Scholar 

  17. O’Boyle NM, Banck M, James CA et al (2011) Open Babel: an open chemical toolbox. J Cheminformatics 3:33

    Article  Google Scholar 

  18. Case DA, Ben-Shalom IY, Brozell SR, Cerutti DS, Cheatham TE III, Cruzeiro VWD, Darden TA, Duke RE, Ghoreishi D, Gilson MK, Gohlke H, Goetz AW, Greene D, Harris R, Homeyer N, Huang Y, Izadi S, Kovalenko A, Kurtzman T, Lee TS, LeGrand S, Li P, Lin C, Liu J, Luchko T, Luo R, Mermelstein DJ, Merz KM, Miao Y, Monard G, Nguyen C, Nguyen H, Omelyan I, Onufriev A, Pan F, Qi R, Roe DR, Roitberg A, Sagui C, Schott-Verdugo S, Shen J, Simmerling CL, Smith J, SalomonFerrer R, Swails J, Walker RC, Wang J, Wei H, Wolf RM, Wu X, Xiao L, York DM, Kollman PA (2018) AMBER 2018, University of California, San Francisco

  19. Jakalian A, Jack DB, Bayly CI (2002) Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II Parameterization and validation. J Comput Chem 23:1623–1641

    Article  CAS  Google Scholar 

  20. Maier JA, Martinez C, Kasavajhala K et al (2015) ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput 11:3696–3713

    Article  CAS  Google Scholar 

  21. Wang J, Wolf RM, Caldwell JW et al (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174

    Article  CAS  Google Scholar 

  22. Salomon-Ferrer R, Case DA, Walker RC (2013) An overview of the Amber biomolecular simulation package: Amber biomolecular simulation package. Wiley Interdiscip Rev Comput Mol Sci 3:198–210. https://doi.org/10.1002/wcms.1121

    Article  CAS  Google Scholar 

  23. Miller BR III, McGee TD Jr, Swails JM et al (2012) MMPBSA. py: an efficient program for end-state free energy calculations. J Chem Theory Comput 8:3314–3321

    Article  CAS  Google Scholar 

  24. Lätti S, Niinivehmas S, Pentikäinen OT (2016) Rocker: open source, easy-to-use tool for AUC and enrichment calculations and ROC visualization. J Cheminformatics 8:1–5

    Article  Google Scholar 

  25. Zhao W, Hevener KE, White SW et al (2009) A statistical framework to evaluate virtual screening. BMC Bioinformatics 10:225

    Article  Google Scholar 

  26. Truchon J-F, Bayly CI (2007) Evaluating virtual screening methods: good and bad metrics for the “early recognition” problem. J Chem Inf Model 47:488–508

    Article  CAS  Google Scholar 

  27. Hou T, Wang J, Li Y, Wang W (2011) Assessing the performance of the MM/PBSA and MM/GBSA Methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model 51:69–82. https://doi.org/10.1021/ci100275a

    Article  CAS  PubMed  Google Scholar 

  28. Gillilan RE, Ayers SD, Noy N (2007) Structural basis for activation of fatty acid-binding protein 4. J Mol Biol 372:1246–1260. https://doi.org/10.1016/j.jmb.2007.07.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cavasotto CN, Abagyan RA (2004) Protein flexibility in ligand docking and virtual screening to protein kinases. J Mol Biol 337:209–225. https://doi.org/10.1016/j.jmb.2004.01.003

    Article  CAS  PubMed  Google Scholar 

  30. Pagadala NS, Syed K, Tuszynski J (2017) Software for molecular docking: a review. Biophys Rev 9:91–102

    Article  CAS  Google Scholar 

  31. Lindström A, Edvinsson L, Johansson A et al (2011) Postprocessing of docked protein−ligand complexes using implicit solvation models. J Chem Inf Model 51:267–282. https://doi.org/10.1021/ci100354x

    Article  CAS  PubMed  Google Scholar 

  32. Amaro RE, Baudry J, Chodera J et al (2018) Ensemble docking in drug discovery. Biophys J 114:2271–2278

    Article  CAS  Google Scholar 

  33. Abagyan R, Totrov M, Kuznetsov D (1994) ICM—a new method for protein modeling and design: applications to docking and structure prediction from the distorted native conformation. J Comput Chem 15:488–506

    Article  CAS  Google Scholar 

  34. Plewczynski D, Łaźniewski M, Augustyniak R, Ginalski K (2011) Can we trust docking results? evaluation of seven commonly used programs on PDBbind database. J Comput Chem 32:742–755. https://doi.org/10.1002/jcc.21643

    Article  CAS  PubMed  Google Scholar 

  35. Kaminski G, Jorgensen WL (1996) Performance of the AMBER94, MMFF94, and OPLS-AA force fields for modeling organic liquids. J Phys Chem 100:18010–18013. https://doi.org/10.1021/jp9624257

    Article  CAS  Google Scholar 

  36. Tsai K-C, Chen Y-C, Hsiao N-W et al (2010) A comparison of different electrostatic potentials on prediction accuracy in CoMFA and CoMSIA studies. Eur J Med Chem 45:1544–1551. https://doi.org/10.1016/j.ejmech.2009.12.063

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Arcady Mushegian and Irina Sorokina for helpful discussion and comments. We also thank Joint Institute for Nuclear Research (Dubna, Russia) for provided HPC resources.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harutyun Sahakyan.

Ethics declarations

Conflict of interest

The author declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 kb)

Supplementary file2 (ZIP 148 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahakyan, H. Improving virtual screening results with MM/GBSA and MM/PBSA rescoring. J Comput Aided Mol Des 35, 731–736 (2021). https://doi.org/10.1007/s10822-021-00389-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-021-00389-3

Keywords

Navigation