Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Confined crystallization and chain conformational change in electrospun poly(ethylene oxide) nanofibers

Abstract

This study focused on understanding the confined crystallization of poly(ethylene oxide) (PEO) in electrospun nanofibers. The effect of thermal treatment on PEO crystallization was also studied. An electrospinning process with a rotating drum collector enabled stretching and aligning of polymer chains, which resulted in the formation of a planar zigzag conformation. The confined environment in nanofibers facilitated an ordered crystal arrangement, resulting in an increase in the degree of crystallinity with a decrease in the fiber diameter. By contrast, large fibers extended solvent evaporation, which resulted in large crystallite sizes. The confined geometry and mechanical force provided by a rotating collector induced the preferred crystal orientation parallel to the fiber axis. Upon thermal annealing, the stretched PEO chains relaxed, resulting in a change from the metastable zigzag conformation to a stable helical conformation. Thermal treatment monotonically increased the melting temperature, degree of crystallinity, and crystallite size of PEO nanofibers regardless of the fiber diameter but did not influence the orientation of the organized crystals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Frank CW, Rao V, Despotopoulou MM, Pease RFW, Hinsberg WD, Miller RD, et al. Structure in thin and ultrathin spin-cast polymer films. Science. 1996;273:912–5.

    Article  CAS  PubMed  Google Scholar 

  2. Hu ZJ, Huang HY, Zhang FJ, Du BY, He TB. Thickness-dependent molecular chain and lamellar crystal orientation in ultrathin poly(di-n-hexylsilane) films. Langmuir. 2004;20:3271–7.

    Article  CAS  PubMed  Google Scholar 

  3. Jin Y, Rogunova M, Hiltner A, Baer E, Nowacki R, Galeski A, et al. Structure of polypropylene crystallized in confined nanolayers. J Polym Sci Polym Phys Ed. 2004;42:3380–96.

    Article  CAS  Google Scholar 

  4. Wang HP, Kenum JK, Hiltner A, Baer E, Freeman B, Rozanski A, et al. Confined crystallization of polyethylene oxide in nanolayer assemblies. Science. 2009;323:757–60.

    Article  CAS  PubMed  Google Scholar 

  5. Orench IP, Stribeck N, Ania F, Baer E, Hiltner A, Calleja FJB. SAXS study on the crystallization of PET under physical confinement in PET/PC multilayered films. Polymer. 2009;50:2680–7.

    Article  CAS  Google Scholar 

  6. Woo E, Huh J, Jeong YG, Shin K. From homogeneous to heterogeneous nucleation of chain molecules under nanoscopic cylindrical confinement. Phys Rev Lett. 2007;98:136103.

    Article  PubMed  CAS  Google Scholar 

  7. Shin K, Woo E, Jeong YG, Kim C, Huh J, Kim KW. Crystalline structures, melting, and crystallization of linear polyethylene in cylindrical nanopores. Macromolecules. 2007;40:6617–23.

    Article  CAS  Google Scholar 

  8. Rangarajan P, Register RA, Fetters LJ, Bras W, Naylor S, Ryan AJ. Crystallization of a weakly segregated polyolefin diblock copolymer. Macromolecules. 1995;28:4932–8.

    Article  CAS  Google Scholar 

  9. Ryan AJ, Fairclough JPA, Hamley IW, Mai SM, Booth C. Chain folding in crystallizable block copolymers. Macromolecules. 1997;30:1723–7.

    Article  CAS  Google Scholar 

  10. Chen HL, Wu JC, Lin TL, Lin JS. Crystallization kinetics in microphase-separated poly(ethylene oxide)-block-poly(1,4-butadiene). Macromolecules. 2001;34:6936–44.

    Article  CAS  Google Scholar 

  11. Huang P, Zhu L, Guo Y, Ge Q, Jing AJ, Chen WY, et al. Confinement size effect on crystal orientation changes of poly(ethylene oxide) blocks in poly(ethylene oxide)-b-polystyrene diblock copolymers. Macromolecules. 2004;37:3689–98.

    Article  CAS  Google Scholar 

  12. Chen YW, Yeh BJ, Hashimoto T, Liao SY, Lo CT. Hydrogen bonding induced co-ordering and interfacial curvature controlled crystallization behavior of binary copolymer blends. Macromolecules. 2018;51:7699–712.

    Article  CAS  Google Scholar 

  13. Zhu L, Cheng SZD, Calhoum BH, Ge Q, Quirk RP, Thomas EL, et al. Crystallization temperature-dependent crystal orientations within nanoscale confined lamellar of a self-assembled crystalline-amorphous diblock copolymer. J Am Chem Soc. 2000;122:5957–67.

    Article  CAS  Google Scholar 

  14. Carr JM, Langhe DS, Ponting MT, Hiltner A, Baer E. Confined crystallization in polymer nanolayered films: a review. J Mater Res. 2012;27:1326–50.

    Article  CAS  Google Scholar 

  15. Kakade MV, Givens S, Gardner K, Lee KH, Chase DB, Rabolt JF. Electric field induced orientation of polymer chains in macroscopically aligned electrospun polymer nanofibers. J Am Chem Soc. 2007;129:2777–82.

    Article  CAS  PubMed  Google Scholar 

  16. Yee WA, Kotaki M, Liu Y, Lu X. Morphology, polymorphism behavior and molecular orientation of electrospun poly(vinylidene fluoride) fibers. Polymer. 2007;48:512–21.

    Article  CAS  Google Scholar 

  17. Kongkhlang T, Tashiro K, Kotaki M, Chirachanchai S. Electrospinning as a new technique to control the crystal morphology and molecular orientation of polyoxymethylene nanofibers. J Am Chem Soc. 2008;130:15460–6.

    Article  CAS  PubMed  Google Scholar 

  18. Lim CT, Tan EPS, Ng SY. Effects of crystalline morphology on the tensile properties of electrospun polymer nanofibers. Appl Phys Lett. 2008;92:141908.

    Article  CAS  Google Scholar 

  19. Chan KHK, Wong SY, Li X, Zhang YZ, Lim PC, Lim CT. et al.Effect of molecular orientation on mechanical property of single electrospun fiber of poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate].J Phys Chem B.2009;113:13179–85.

    Article  CAS  PubMed  Google Scholar 

  20. Cheng YW, Lu HA, Wang YC, Thierry A, Lotz B, Wang C. Syndiotactic polystyrene nanofibers obtained from high-temperature solution electrospinning process. Macromolecules. 2010;43:2371–6.

    Article  CAS  Google Scholar 

  21. Kolbuk D, Sajkiewicz P, Kowalewski TA. Optical birefringence and molecular orientation of electrospun polycaprolactone fibers by polarizing-interference microscopy. Eur Polym J. 2012;48:275–83.

    Article  CAS  Google Scholar 

  22. Ma Q, Pyda M, Mao B, Cebe P. Relationship between the rigid amorphous phase and mesophase in electrospun fibers. Polymer. 2013;54:2544–54.

    Article  CAS  Google Scholar 

  23. Gong L, Chase DB, Noda I, Liu J, Martin DC, Ni C. et al.Discovery of β-form crystal structure in electrospun poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] (PHBHx) nanofibers: from fiber mats to single fibers.Macromolecules. 2015;48:6197–205.

    Article  CAS  Google Scholar 

  24. Wang C, Fang CY, Wang CY. Electrospun poly(butylene terephthalate) fibers: entanglement density effect on fiber diameter and fiber nucleating ability towards isotactic polypropylene. Polymer. 2015;72:21–9.

    Article  CAS  Google Scholar 

  25. Gazzano M, Gualandi C, Zucchelli A, Sui T, Korsunsky AM, Reinhard C, et al. Structure-morphology correlation in electrospun fibers of semicrystalline polymers by simultaneous synchrotron SAXS-WAXD. Polymer. 2015;63:154–63.

    Article  CAS  Google Scholar 

  26. Baqeri M, Abolhasani MM, Mozdianfard MR, Guo Q, Oroumei A, Naebe M. Influence of processing conditions on polymorphic behavior, crystallinity, and morphology of electrospun poly(vinylidene fluoride) nanofibers. J Appl Polym Sci. 2015;132:42304.

    Article  CAS  Google Scholar 

  27. Liu J, Lin DY, Wei B, Martin DC. Single electrospun PLLA and PCL polymer nanofibers: increased molecular orientation with decreased fiber diameter. Polymer. 2017;118:143–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chung J, Chung JW, Priestley RD, Kwak SY. Confinement-induced change in chain topology of ultrathin polymer fibers. Macromolecules. 2018;51:4229–37.

    Article  CAS  Google Scholar 

  29. Song Z, Chiang SW, Chu X, Du H, Li J, Gan L, et al. Effects of solvent on structures and properties of electrospun poly(ethylene oxide) nanofibers. J Appl Polym Sci. 2018;135:45787.

    Article  CAS  Google Scholar 

  30. Maurya AK, Weidenbacher L, Spano F, Forunato G, Rossi RM, Frenz M, et al. Structure insights into semicrystalline states of electrospun nanofibers: a multiscale analytical approach. Nanoscale. 2019;11:7176–87.

    Article  CAS  PubMed  Google Scholar 

  31. Li D, Xia Y. Electrospinning of nanofibers: reinventing the wheel? Adv Mater. 2004;16:1151–70.

    Article  CAS  Google Scholar 

  32. Ding Y, Rabolt JF, Chen Y, Olson KL, Baker GL. Studies of chain conformation in triblock oligomers and microblock copolymers of ethylene and ethylene oxide. Macromolecules. 2002;35:3914–20.

    Article  CAS  Google Scholar 

  33. Takahashi Y, Sumita I, Tadokoro H. Structural studies of polyethers. IX. Planar zigzag modification of poly(ethylene oxide). J Polym Sci Polym Phys Ed. 1973;11:2113–22.

    CAS  Google Scholar 

  34. Lisowski MS, Liu Q, Cho J, Runt J, Yeh F, Hsiao BS. Crystallization behavior of poly(ethylene oxide) and its blends using time-resolved wide- and small-angle X-ray scattering. Macromolecules. 2000;33:4842–9.

    Article  CAS  Google Scholar 

  35. Mohamed A, Larbi FBC, Dubault A, Halary JL. Structural study of semi-crystalline blends of poly(vinylidene fluoride) and poly(methyl methacrylate) by means of linear correlation and interface distribution functions. e-Polymers. 2005;5:56.

    Google Scholar 

  36. Li X, Hsu SL. An analysis of the crystallization behavior of poly(ethylene oxide)/poly(methyl methacrylate) blends by spectroscopic and calorimetric techniques. J Polym Sci Polym Phys Ed. 1984;22:1331–42.

    Article  CAS  Google Scholar 

  37. Chrissopoulou K, Andrikopoulos KS, Fotiadou S, Bollas S, Karageorgaki C, Christofilos D, et al. Crystallinity and chain conformation in PEO/layered silicate nanocomposites. Macromolecules. 2011;44:9710–22.

    Article  CAS  Google Scholar 

  38. Su Z, Li J, Li Q, Ni T, Wei G. Chain conformation, crystallization behavior, electrical and mechanical properties of electrospun polymer-carbon nanotube hybrid nanofibers with different orientations. Carbon. 2012;50:5605–17.

    Article  CAS  Google Scholar 

  39. Yoshioka T, Dersch R, Tsuji M, Schaper AK. Orientation analysis of individual electrospun PE nanofibers by transmission electron microscopy. Polymer. 2010;51:2383–9.

    Article  CAS  Google Scholar 

  40. Joziasse CAP, Veenstra H, Grijpma DW, Pennings AJ. On the chain stiffness of poly(1actide)s. Macromol Chem Phys. 1996;197:2219–29.

    Article  CAS  Google Scholar 

  41. Zhang H, Luo X, Lin X, Lu X, Zhou Y, Tang Y. Polycaprolactone/chitosan blends: simulation and experimental design. Mater Des. 2016;90:396–402.

    Article  CAS  Google Scholar 

  42. Mattice WL, Helfer CA, Sokolov AP. On the relationship between the characteristic ratio of a finite chain, Cn, and the asymptotic limit, C∞. Macromolecules. 2003;36:9924–8.

    Article  CAS  Google Scholar 

  43. Kugler J, Fixher EW, Peuscher M, Eisenbach CD. Small angle neutron scattering studies of poly(ethylene oxide) in the melt. Makromol Chem. 1983;184:2325–34.

    Article  CAS  Google Scholar 

  44. Bortel E, Hodorowicz S, Lamot R. Relation between crystallinity degree and stability in solid state of high molecular wight poly(ethylene oxide)s. Makromol Chem. 1979;180:2491–8.

    Article  CAS  Google Scholar 

  45. Saujanya C, Radhakrishnan S. Crystallization behavior of polyethylene oxide/para-nitroaniline microdispersed composites. J Appl Polym Sci. 1997;65:1127–37.

    Article  CAS  Google Scholar 

  46. Luo H, Huang Y, Wang D, Shi J. Coaxial-electrospinning as a new method to study confined crystallization of polymer. J Polym Sci Polym Phys Ed. 2013;51:376–83.

    Article  CAS  Google Scholar 

  47. Wang C, Hsieh TC, Cheng YW. Solution-electrospun isotactic polypropylene fibers: processing and microstructure development during stepwise annealing. Macromolecules. 2010;43:9022–9.

    Article  CAS  Google Scholar 

  48. Strobl GR, Schneider M. Direct evaluation of the electron density correlation function of partially crystalline polymers. J Polym Sci Polym Phys Ed. 1980;18:1343–59.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Ministry of Science and Technology of Taiwan under Grant Nos. 105-2628-E-006-009-MY3 and 108-2221-E-006-053-MY3. The authors gratefully acknowledge the use of SAXS belonging to the Instrument Center of National Cheng Kung University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chieh-Tsung Lo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, N.Q., Chen, TF. & Lo, CT. Confined crystallization and chain conformational change in electrospun poly(ethylene oxide) nanofibers. Polym J 53, 895–905 (2021). https://doi.org/10.1038/s41428-021-00492-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00492-0

This article is cited by

Search

Quick links