Skip to main content
Log in

Effect of Chemical Composition and Structure on the Shape Recovery Temperatures of Titanium Nickelide-Based Alloys

  • Published:
Metallurgist Aims and scope

It is shown that the structure of alloys based on titanium nickelide, obtained by industrial technology, invariably contains titanium-rich phases of type Ti2Ni/Ti4Ni2(O, N), even if the nickel concentration in the B2-phase exceeds the equiatomic composition. The volume fraction of these phases depends on the smelting method, the purity of the charge, and the technology used for subsequent ingot processing. Regression equations linking shape recovery temperatures with the concentration of nickel in the B2-phase in the quenched state are presented. On the basis of these equations, a method for calculating the volume fraction of Ti3Ni4 type particles released during aging is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. L. Lecce and A. Concilio, Shape Memory Alloy Engineering for Aerospace, Structural and Biomedical Applications, Elsevier Ltd (2015); DOI: https://doi.org/10.1016/C2012-0-07151-7.

    Book  Google Scholar 

  2. O. Benefan, J. Brown, F. T. Calkins, P. Kumar, A. P. Stebner, T. L. Turner, R. Vaidyanathan, J. Webster, and M. L. Young, “Shape memory alloy actuator design: CASMART collaborative best practices and case studies,” Int. J. Mech. Mater. Des., No. 10, 1–42 (2014).

  3. A. A. Ilyin, M. Yu. Kollerov, V. I. Khachin, and D. A. Gusev, “Medical instruments and implants of titanium nickelide: physical metallurgy, technology, and application,” Russ. Metall., No. 3, 296–300 (2002).

  4. E. Lukina, M. Kollerov, J. Meswania, P. Panin, A. Khon, and G. Blunn, “The influence of TiN and DLC deposition on the wear resistance of Nitinol-Ti6Al4V combination for the medical application,” Mater. Today: Proc., 4, No. 3., 4675–4679 (2017).

    Google Scholar 

  5. J. Frenzel, E. P. George, A. Dlouhy, Ch. Somsen, M. F.-X. Wagner, and G. Eggeler, “Influence of Ni on martensitic phase transformations in NiTi shape memory alloys,” Acta Mater., 58, No. 9, 3444–3458 (2010).

    Article  CAS  Google Scholar 

  6. J. Khalil-Allafia and B. Amin-Ahmadi, “The effect of chemical composition on enthalpy and entropy changes of martensitic transformations in binary NiTi shape memory alloys,” J. Alloys Comp., 487, 363–366 (2009).

    Article  Google Scholar 

  7. K. Mehrabi, H. Bahmanpour, A. Shokuhfar, and A. Kneissl, “Influence of chemical composition and manufacturing conditions on properties of NiTi shape memory alloys,” Mater. Sci. and Eng. A., 481–482, 693–696 (2008).

    Article  Google Scholar 

  8. S. M. Russell and A. R. Pelton, “Nitinol Melting and Fabrication,” Proceedings of SMST, 2000, (2000).

  9. M. H. Elahinia, M. Hashemi, M. Tabesh, and S. B. Bhaduri, “Manufacturing and processing of NiTi implants: A review,” Prog. Mater. Sci., 57, 911–946 (2012).

    Article  CAS  Google Scholar 

  10. D. E. Gusev, M. Yu. Kollerov, and A. A. Popov, “Effect of the volume fraction of Ti2Ni and aging on the structure and properties of alloys based on titanium nickelide,” Met. Sci. Heat Treat., 60, Is. 1-2, 72–79 (2018).

  11. K. Otsuka and X. Ren, “Physical metallurgy of Ti–Ni-based shape memory alloys,” Prog. Mater. Sci., 50, No. 5, 511–678 (2005).

    Article  CAS  Google Scholar 

  12. A. Coda, S. Zilio, D. Norwich, and F. Sczerzenie, “Characterization of Inclusions in VIM/VAR NiTi Alloys,” J. Mater. Eng. Perform., 21, 2572–2577 (2012).

    Article  CAS  Google Scholar 

  13. A. Toro, F. Zhou, M. H. Wu, W. Van Geertruyden, and W. Z. Misiolek, “Characterization of non-metallic inclusions in superelastic NiTi tubes,” J. Mater. Eng. Perform., 18, 448–458 (2009).

    Article  CAS  Google Scholar 

  14. A. I. Lotkov, S. Yu. Zavodchikov, V. A. Kotrekhov, V. N. Grishkov, N. V. Girsova, and V. N. Timkin, “Structure and martensitic transformations in titanium nickelide ingots obtained by vacuum induction melting with a cold crucible,” Persp. Mat., 1, No. 13 (Special edition), 31–42 (2011).

  15. V. V. Tetyukhin, I. V. Levin, M. I. Musatov, I. Yu. Puzakov, S. M. Chechulin, and N. Yu. Tarenkova, “Skull melting as a promising method for the production of complex alloyed titanium alloys,” Tekh. Legk. Spl., No. 4, 7–12 (2007).

  16. ASTM F2082/F2082M-16, Standard Test Method for Determination of Transformation Temperature of Nickel-Titanium Shape Memory Alloys by Bend and Free Recovery, ASTM International, West Conshohocken, PA, 2016; [electronic resource] www.astm.org (requested on 27.07.2020).

  17. ASTM F2063–18, Standard Specification for Wrought Nickel-Titanium Shape Memory Alloys for Medical Devices and Surgical Implants, ASTM International, West Conshohocken, PA (2018); [electronic resource] www.astm.org (requested on 27.07.2020).

  18. M. Yu. Kollerov, D. E. Gusev, A. A. Chernysheva, D. A. Lamzin, A. V. Matytsin, and S. I. Gurtovoy, “Influence of the chemical composition and volume fraction of the Ti2Ni intermetallic compound on the characteristics of the shape memory effect in alloys based on titanium nickelide,” Nauch. Trud. MATI, No. 11 (83), Moscow, Lamtec, 12–16 (2006).

  19. M. Yu. Kollerov, D. E. Gusev, A. A. Chernyshova, S. I. Gurtovoy, and R. E. Vinogradov, “Influence of the content of nickel and impurities on the structure and temperature of the shape memory effect of alloys based on titanium nickelide,” Titan, 63, No. 1, 7–14 (2019).

  20. G. R. Purdy and J. G. Parr, “A study of the titanium-nickel system between Ti2Ni and TiNi,” Trans. Metall. Soc. AIME, 221, 636–639 (1961).

    CAS  Google Scholar 

  21. A. A. Ilyin, Mechanism and Kinetics of Phase and Structural Transformations in Titanium Alloys, Moscow, Nauka (1994).

    Google Scholar 

  22. D. Holec, M. Friak, A. Dlouhy, and J. Neugebauer, “Ab initio study of point defects in NiTi-based alloys,” Phys. Rev. B, 89, 014110, 1–6 (2014).

    Google Scholar 

  23. J. M. Lu, Q. M. Hu, L. Wang, Y. J. Li, D. S. Xu, and R. Yang, “Point defects and their interaction in TiNi from first-principles calculations,” Phys. Rev. B, 75, 094108, 1–7 (2007).

    Google Scholar 

  24. X. Ren and K. Otsuka, “A unified model for point-defect formation in B2 intermetallic compounds,” Philos. Mag. A, 80, No. 2, 467–491 (2000).

    Article  CAS  Google Scholar 

  25. G. Erdelyi, Z. Erdelyi, D. L. Beke, J. Bernardini, and C. Lexcellent, “Pressure dependence of Ni self-diffusion in NiTi,” Phys. Rev. B., 62, No. 17, 11284–11287 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Kollerov.

Additional information

Translated from Metallurg, Vol. 65, No. 1, pp. 84–92, January, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kollerov, M.Y., Gusev, D.E., Sharonov, A.A. et al. Effect of Chemical Composition and Structure on the Shape Recovery Temperatures of Titanium Nickelide-Based Alloys. Metallurgist 65, 102–112 (2021). https://doi.org/10.1007/s11015-021-01137-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11015-021-01137-6

Keywords

Navigation