Skip to main content

Advertisement

Log in

Innovative Practices to Maximize Resource Recovery and Minimize Greenhouse Gas Emissions from Landfill Waste Cells: Historical and Recent Developments

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

Over the last few decades, landfill design and operational practices have evolved. Current landfill waste cells include innovative features that eliminate most of the negative environmental impacts associated with waste disposal on land. This review focuses on some of the historical and recent advances in waste cell design and operational practices that minimize greenhouse gas (GHG) emissions associated with landfills that accept biodegradable organic waste and maximize energy and resource recovery from waste cells. Here, we emphasize innovative practices such as the operation of a waste cell as a landfill bioreactor with leachate recirculation to maximize landfill gas production and increase the rate of waste stabilization, controlling GHG emissions during filling of the waste cell, and mining of waste cells to recover recyclables and reuse waste residue for energy recovery and other beneficial uses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams BL, Besnard F, Bogner J, Hilger H (2011) Bio-tarp alternative daily cover prototypes for methane oxidation atop open landfill cells. Waste Manage. https://doi.org/10.1016/j.wasman.2011.01.003

    Article  Google Scholar 

  2. Agdag O, Sponza T (2004) Effect of aeration on the performance of a simulated landfilling reactor stabilizing municipal solid wastes. J Environ Sci Health 39(11–12):2955–2972

    Google Scholar 

  3. Ahmadifar M, Sartaj M, Abdallah M (2016) Investigating the performance of aerobic, semi-aerobic, and anaerobic bioreactor landfills for MSW management in developing countries. J Mater Cycles Waste Manage. https://doi.org/10.1007/s10163-015-0372-0

    Article  Google Scholar 

  4. Al-Yousfi AB (1994) Modeling of leachate and gas production and composition at sanitary landfills.

  5. Al-Yousfi AB, Pohland FG (1998) Strategies for simulation, design and management of solid waste disposal sites as landfill bioreactors. Pract Period Hazard Toxic Radioact Waste Manage 2(1):13–21

    CAS  Google Scholar 

  6. Alam MZ (2016) Moisture distribution efficiency and performance evaluations of bioreactor landfill operations. PhD Thesis. University of Texas at Arlington, USA, p 206

  7. Alkaabi S, Van Geel PJ, Warith MA (2009) Effect of saline water and sludge addition on biodegradation of municipal solid waste in bioreactor landfills. Waste Manage Res 27(1):59–69

    CAS  Google Scholar 

  8. ASTM (2005) D6523-00(2005) Standard guide for evaluation and selection of alternative daily covers (ADCs) for sanitary landfills. https://doi.org/10.1520/D6523-00R05

  9. Avolio R, Spina F, Gentile G, Cocca M, Avella M, Carfagna C, et al (2019) Recycling polyethylene-rich plastic waste from landfill reclamation: toward an enhanced landfill-mining approach. Polymers, 11(2). https://doi.org/10.3390/polym11020208

  10. Bareither CA, Barlaz MA, Doran M, Benson CH (2017) Retrospective analysis of Wisconsin’s landfill organic stability rule. J Environ Eng 143(3):1–11

    Google Scholar 

  11. Bareither CA, Benson CH, Barlaz MA, Edil TB, Tolaymat TM (2010) Performance of North American bioreactor landfills I: leachate hydrology and waste settlement. J Environ Eng 136:839–853

    Google Scholar 

  12. Barlaz MA, Bareither CA, Hossain A, Saquing J, Mezzari I, Benson CJ et al (2010) Performance of North American bioreactor landfills II: chemical and biological characteristics. J Environ Eng 136(8):839–853

    CAS  Google Scholar 

  13. Barlaz MA, Ham RK, Schaefer DM (1990) Methane production from municipal refuse: a review of enhancement techniques and microbial dynamics. Crit Rev Environ Control 19(6):557–584

    CAS  Google Scholar 

  14. Bartholameuz EM, Hettiaratchi JPA (2016) Evaluating aeration configurations in aerobic landfills. Curr Environ Eng 3(2):107–117

    CAS  Google Scholar 

  15. Bartholameuz EM, Hettiaratchi JPA, Kumar S (2016) Enhanced performance of the aerobic landfill reactor by augmentation of manganese peroxidase. Biores Technol 218:46–52

    CAS  Google Scholar 

  16. Bartholameuz EM, Hettiaratchi JP, Steele M, Kumar S (2020) Reaction kinetic analysis of manganese peroxidase augmented aerobic waste degradation. J Hazard Toxic Radioact Waste 24:04020043

    CAS  Google Scholar 

  17. Benson CH, Barlaz MA, Lane DT, Rawe JM (2007) Practice review of five bioreactor/ recirculation landfills. Waste Manage 27:13–29

    CAS  Google Scholar 

  18. Berge ND, Reinhart DR, Batarseh ES (2009) An assessment of bioreactor landfill costs and benefits. Waste Manage. https://doi.org/10.1016/j.wasman.2008.12.010

    Article  Google Scholar 

  19. Bhambulkar AV (2011) Effects of leachate recirculation on a landfill. Int J Adv Eng Sci Technol 11(2):286–291

    Google Scholar 

  20. Bilgili MS, Demir A, Ozkaya B (2004) Effects of recirculation on leachate characteristics at landfills. Fresenius Environ Bull 13(10):1000–1005

    CAS  Google Scholar 

  21. Borglin SE, Hazen TC, Oldenburg CM, Zawislanski PT (2004) Comparison of aerobic and anaerobic biotreatment of municipal solid waste. Air Waste Manage Assoc 54:815–822

    CAS  Google Scholar 

  22. Bosmans A, Vanderreydt I, Geysen D, Helsen L (2013) The crucial role of Waste-to-Energy technologies in enhanced landfill mining: a technology review. J Clean Prod 55:10–23. https://doi.org/10.1016/j.jclepro.2012.05.032

    Article  Google Scholar 

  23. Bucinskas A, Kriipsalu M, Denafas G (2018) Proposal for feasibility assessment model for landfill mining and its implementation for energy generation scenarios. Sustainability. https://doi.org/10.3390/su10082882

    Article  Google Scholar 

  24. Budihardjo MA, Rizaldianto AR, Muhammad FI (2019) Performance of aerobic and anaerobic landfill bioreactor for municipal solid waste treatment in Jatibarang landfill, Semarang. Mater Sci Eng. https://doi.org/10.1088/1757-899X/669/1/012021

    Article  Google Scholar 

  25. Bugg TDH, Ahmad M, Hardiman EM, Singh R (2011) The emerging role for bacteria in lignin degradation and bio-product formation. Curr Opin Biotechnol 22:394–400

    CAS  Google Scholar 

  26. Byun B, Kim I, Kim G, Eun J, Lee J (2019) Stability of bioreactor landfills with leachate injection configuration and landfill material condition. Comput Geotech 108:234–243

    Google Scholar 

  27. Campman C, Yates A (2002) Bioreactor landfills: an idea whose time has come. MSW Management 12(6):70–81

    Google Scholar 

  28. Cao BY, Feng SJ, Li AZ (2018) CFD Modeling of anaerobic? Aerobic hybrid bioreactor landfills. Int J Geomech. https://doi.org/10.1061/(ASCE)GM.0001192

    Article  Google Scholar 

  29. Cappucci GM, Avolio R, Carfagna C, Cocca M, Gentile G, Scarpellini S et al (2020) Environmental life cycle assessment of the recycling processes of waste plastics recovered by landfill mining. Waste Manage 118:68–78. https://doi.org/10.1016/j.wasman.2020.07.048

    Article  CAS  Google Scholar 

  30. Caterina D, Isunza Marinque I, Inauen C, Watlet A, Dashwood B, De Rijdt R et al (2019) Contribution of geophysical methods to the study of old landfills: A Case study in Onoz (Belgium). In: 17th International waste management and landfill symposium, p 15.

  31. Cayuela ML, Snchez-Monedero MA, Roig A (2010) Two-phase olive mill waste composting: enhancement of the composting rate and compost quality by grape stalks addition. Biodegradation 21(3):465–473

    Google Scholar 

  32. Çevikbilen G, Başar HM, Karadoğan Ü, Teymur B, Dağlı S, Tolun L (2020) Assessment of the use of dredged marine materials in sanitary landfills: A case study from the Marmara Sea. Waste Manage 113:70–79

    Google Scholar 

  33. Choi H, Ryu HW, Cho KS (2018) Bio-complex textile as an alternative daily cover for the simultaneous mitigation of methane and malodorous compounds. Waste Manage 72:339–348

    CAS  Google Scholar 

  34. Choi H, Choi Y, Rhee S-W (2020) Estimation on migration characteristics of leachate using analysis of hydraulic conductivity at bioreactor landfill. Waste Manage Res 38(1):59–68

    CAS  Google Scholar 

  35. Chong TL, Matsufuji Y, Hassan MN (2005) Implementation of the semi-aerobic landfill system (Fukuoka method) in developing countries: a Malaysia cost analysis. Waste Manage 25(7):702–711

    Google Scholar 

  36. Cirne DG, Agbor VB, Bjornsson L (2008) Enhanced solubilisation of the residual fraction of municipal solid waste. Water Sci Technol 57(7):995–1000

    CAS  Google Scholar 

  37. Cossu R, Hogland W, Salerni E (1996) Landfill mining in Europe and USA. ISWA Yearbook

  38. Cossu R, Morello L, Raga R, Cerminar G (2016) Biogas production enhancement using semi-aerobic pre-aeration in a hybrid bioreactor landfill. Waste Manage 55:83–92

    CAS  Google Scholar 

  39. Datta M, Somani M, Ramana GV, Sreekrishnan TR (2021) Feasibility of re-using soil-like material obtained from mining of old MSW dumps as an earth-fill and as compost. Process Saf Environ Prot 147:477–487

    CAS  Google Scholar 

  40. Degueurce A, Tremier A, Peu P (2016) Dynamic effect of leachate recirculation on batch mode solid state anaerobic digestion: influence of recirculated volume, leachate to substrate ratio and recirculation periodicity. Biores Technol 216:553–561

    CAS  Google Scholar 

  41. Delgenes JP, Penaud V, Moletta R (2002) Pretreatments for the enhancement of anaerobic digestion of solid wastes. ChemInform 1:201–228

    Google Scholar 

  42. Dickinson W (1995) Landfill mining comes of age. Solid Waste Technologies 9:42–47

    Google Scholar 

  43. Duffy DP (2004) The use of geosynthetics in bioreactor landfill. MSW Management. http://www.forester.net/mw_0401_use.html

  44. Einhaupl P, Krook J, Svensson N, Van Acker K, Van Passel S (2019) Eliciting stakeholder needs—an anticipatory approach assessing enhanced landfill mining. Waste Manage. https://doi.org/10.1016/j.wasman.2019.08.009

    Article  Google Scholar 

  45. El-Fadel M (1999) Leachate recirculation effects on settlement and biodegradation rates in MSW landfills. Environ Technol 20(2):121–133

    CAS  Google Scholar 

  46. Environment Canada (2014) Canada’s Sixth National Report on Climate Change

  47. Erses SA, Onay TT (2003) Accelerated landfill waste decomposition by external leachate recirculation from an old landfill cell. Water Sci Technol 47(12):215–222

    Google Scholar 

  48. Esguerra JL, Laner D, Svensson N, Krook J (2021) Landfill mining in Europe: assessing the economic potential of value creation from generated combustibles and fines residue. Waste Manage 126:221–230

    Google Scholar 

  49. Farrokhzadeh H, Hettiaratchi JPA, Jayasinghe PA (2017) Aerated biofilters with multiple-level air injection configurations to enhance biological treatment of methane emissions. Biores Technol 239:219–225

    CAS  Google Scholar 

  50. Feng SJ, Lu SF, Chen HX, Fu WD, Lu F (2017) Three-dimensional modelling of coupled leachate and gas flow in bioreactor landfills. Comput Geotech 84:138–151

    Google Scholar 

  51. Feng S-J, Cao B-Y, Xie HJ (2017) Modeling of leachate recirculation using combined drainage blanket-horizontal trench systems in bioreactor landfills. Waste Manage Res 35(10):1072–1083

    CAS  Google Scholar 

  52. Feng S-J, Chen Z-W, Cao B-Y (2016) Three-dimensional modelling of leachate recirculation using vertical wells in bioreactor landfills. Waste Manage Res 34(12):1307–1315

    Google Scholar 

  53. Feng S-J, Chen Z-W, Chen H-X, Zheng Q-T, Liu R (2018) Slope stability of landfills considering leachate recirculation using vertical wells. Eng Geol 241:76–85

    Google Scholar 

  54. Francois V, Feuillade G, Matejka G, Lagier T, Skhiri N (2007) Leachate recirculation effects on waste degradation: Study on columns. Waste Manage 27(9):1259–1272

    CAS  Google Scholar 

  55. Frank RR, Cipullo S, Garcia J, Davies S, Wagland ST, Villa R et al (2017) Compositional and physicochemical changes in waste materials and biogas production across 7 landfill sites in UK. Waste Manage 63:11–17

    CAS  Google Scholar 

  56. Frank RR, Davies S, Wagland ST, Villa R, Trois C, Coulon F (2016) Evaluating leachate recirculation with cellulase addition to enhance waste biostabilisation and landfill gas production. Waste Manage 55:61–70

    CAS  Google Scholar 

  57. Gan J, Sun Y, Sun W, Liu S (2012) Computer simulation of moisture distribution in unlined aerobic bioreactor landfills-steady-state condition. Procedia Environ Sci 16:730–739

    CAS  Google Scholar 

  58. Ganendra G, Mercado-Garcia D, Hernandez-Sanabria E, Peiren N, de Campeneere S, Ho A, Boon N (2015) Biofiltration of methane from ruminants’ gas effluent using autoclaved aerated concrete as the carrier material. Chem Eng J 277:318–323

    CAS  Google Scholar 

  59. Ghorbanpourbabakandi A (2013) Leachate recirculation modelling using vertical wells in bioreactor landfills. MSc Thesis. The University of Texas at Arlington. p 135

  60. Giri RK, Reddy KR (2013) Two-phase flow modeling of leachate injection effects on stability of bioreactor landfill slopes. Proc Air Waste Manage Assoc 106:1–17

    Google Scholar 

  61. Giri RK, Reddy KR (2014) Design charts for selecting minimum setback distance from side slope to horizontal trench system in bioreactor landfills. Geotech Geol Eng 32:1017–1027

    Google Scholar 

  62. Grossule V, Morello L, Cossu R, Lavagnolo MC (2018) Bioreactor landfills: Comparison and kinetics of the different systems. Detritus. https://doi.org/10.31025/2611-4135/2018.13703

  63. Gu Z, Chen W, Wang F, Li Q (2020) A pilot-scale comparative study of bioreactor landfills for leachate decontamination and municipal solid waste stabilization. Waste Manage 103:113–121. https://doi.org/10.1016/j.wasman.2019.12.023

    Article  CAS  Google Scholar 

  64. Haughey RD (2001) Report: landfill alternative daily cover: conserving air space and reducing landfill operating cost. Waste Manage Res 19(1):89–95. https://doi.org/10.1177/0734242x0101900109

    Article  CAS  Google Scholar 

  65. Haydar MM (2005) Leachate recirculation in bioreactor landfills: Field-scale testing and modeling. Michigan State University

  66. Haydar MM, Khire MV (2005) Leachate recirculation using horizontal trenches in bioreactor landfills. J Geotech Geoenviron Eng 131(7):837–847

    Google Scholar 

  67. He J, Li F, Li Y, Cui XL (2015) Modified sewage sludge as temporary landfill cover material. Water Sci Eng 8(3):257–262

    Google Scholar 

  68. He R, Shen D (2006) Nitrogen removal in the bioreactor landfill system with intermittent aeration at the top of landfilled waste. J Hazard Mater B 136:784–790

    CAS  Google Scholar 

  69. Hermann R, Wolfsberger T, Pomberger R, Sarc R (2016) Landfill mining: Developing a comprehensive assessment method. Waste Manage Res 34(11):1157–1163. https://doi.org/10.1177/0734242X16657610

    Article  Google Scholar 

  70. Hernández-Berriel MC, Mañón-Salas C, Sánchez-Yáñez JM, Lugo-de la Fuente J, Márquez-Benavides L (2010) Influence of recycling different leachate volumes on refuse anaerobic degradation. Open Waste Manage J 3:155–166

    Google Scholar 

  71. Hettiarachchi CH, Hettiaratchi JPA, Hunte C, Meegoda JN (2013) The City of Calgary biocell: operation of a landfill bioreactor in a cold climate: early results and lessons learned. Bioreact Landfills 4(2012):2153–5515. https://doi.org/10.1061/(ASCE)0000159postedonline

    Article  Google Scholar 

  72. Hettiarachchi VC, Hettiaratchi JPA, Mehrotra AK (2007) Comprehensive one-dimensional mathematical model for heat, gas and moisture transport in methane biofilters. ASCE Pract Period Hazard Toxic Radioact Waste Manage 11(4):225–234

    CAS  Google Scholar 

  73. Hettiaratchi JPA (2012) Landfill bioreactors. In: RA Meyers (Ed.) Encyclopedia of sustainability science and technology. New York, NY: Springer. https://doi.org/10.1007/978-1-4419-0851-3-114

  74. Hettiaratchi JPA, Chandrakanthi M, Perera MDN, Davies D, Hundal J, Van Everdingen D (2005) Calgary biocell: design and construction of an innovative landfill cell in cold climates. Canadian Society for Civil Engineering, p 179

  75. Hettiaratchi JPA, Hurtado OD, Hunte C, Hundal J, Colbryn C, Smith C (2007) The Calgary Biocell: a case study in sustainable solid waste management. In: I Chennai (Ed.) Proceedings of the international conference on sustainable solid waste management

  76. Hettiaratchi JPA, Jayasinghe PA, Bartholameuz EM, Kumar S (2014) Waste degradation and gas production with enzymatic enhancement in anaerobic and aerobic landfill bioreactors. Biores Technol 159:433–436

    CAS  Google Scholar 

  77. Hettiaratchi JPA, Jayasinghe PA, Tay JH, Yadev SK (2015) Recent advances in biomass to energy using landfill bioreactor technology. Curr Org Chem 19(5):413–422

    CAS  Google Scholar 

  78. Hettiaratchi JPA, Soh IET, Hunte C (2009) Evaluation of an alternative method of leachate collection system design. Pract Period Hazard Toxic Radioact Waste Manage 13(1):156–164

    Google Scholar 

  79. Hilger H, Bogner J, Adams B, Hamm J, Besnard F, Bodrossy L, Oliver JD (2007) Bio-Tarp: developing a methanotrophic alternative daily cover to reduce landfill methane emissions. Proceedings Sardinia, p 1–10.

  80. Hofrichter M (2002) Review: lignin conversion by manganese peroxidase (MnP). Enzyme Microb Technol 30(4):454–466. https://doi.org/10.1016/s0141-0229(01)00528-2

    Article  CAS  Google Scholar 

  81. Hossain MS, Haque MA (2009) Stability analyses of municipal solid waste landfills with decomposition. Geotech Geol Eng 27(6):659–666

    Google Scholar 

  82. Hrad M, Gamperling O, Huber-Humer M (2013) Comparison between lab- and full-scale applications of in situ aeration of an old landfill and assessment of long-term emission development after completion. Waste Manage 33:2061–2073

    Google Scholar 

  83. Huber-Humer M, Gebert J, Hilger H (2008) Biotic systems to mitigate landfill methane emissions. Waste Manage Res 26:33–46

    CAS  Google Scholar 

  84. Hull RM, Krogmann U, Strom PF (2005) Composition and characteristics of excavated materials from a New Jersey landfill. J Environ Eng 3(478):131. https://doi.org/10.1061/(ASCE)

    Article  Google Scholar 

  85. Hunte CA, Hettiaratchi JPA, Hettiarachchi CH, Meegoda JN (2011) Determination of waste properties from settlement behaviour of a full scale waste cell operated as a landfill bioreactor. In: Geo-Frontiers 2011: advances in geotechnical engineering, pp 1404–1413

  86. Hussain E, Al-Ameen J (2019) Effect of leachate recirculation on biological stability of municipal solid waste under simi-arid conditions. J Eng Sci 12(2):79–83

    Google Scholar 

  87. Ishigaki T, Sugano W, Nakanishi A, Tateda M, Ike M, Fujita M (2003) Application of bioventing to waste landfill for improving waste settlement and leachate quality—a lab-scale model study. J Solid Waste Technol Manage 29(4):230–238

    CAS  Google Scholar 

  88. Jain P, Ko JH, Kumar D, Powell J, Kim H, Maldonado L et al (2014) Case study of landfill leachate recirculation using small-diameter vertical wells. Waste Manage 34:2312–2320

    Google Scholar 

  89. Jain P, Townsend TG, Tolaymat TM (2010) Steady-state design of horizontal systems for liquids addition at bioreactor landfills. Waste Manage 30:2560–2569

    CAS  Google Scholar 

  90. Jain P, Townsend TG, Tolaymat TM (2014) Transient design of landfill liquid addition systems. Waste Manage 34:1667–1673

    Google Scholar 

  91. Jayasinghe P (2013) Enhancing gas production in landfill bioreactors by leachate augmentation. PhD Thesis. University of Calgary

  92. Jayasinghe PA, Hettiaratchi JPA, Mehrotra AK (2014) Reaction mechanism and rate constants of waste degradation in landfill bioreactor systems with enzymatic-enhancement. Biores Technol 162:279–282

    CAS  Google Scholar 

  93. Jayasinghe PA, Hettiaratchi JPA, Mehrotra AK, Kumar SK (2011) Enzymatic enhancement of leachate to increase gas production in landfill bioreactors. Biores Technol 102(7):4633–4637

    CAS  Google Scholar 

  94. Jayasinghe PA, Hettiaratchi JPA, Mehrotra AK, Steele MA (2013) Enhancing gas production in landfill bioreactors: a flow-through column study on leachate augmentation with enzyme. Pract Period Hazard Toxic Radioact Waste Manage 17(4):253–258

    CAS  Google Scholar 

  95. Jianguo J, Guodong Y, Zhou D, Yunfeng H, Zhonglin H, Xiangming F et al (2007) Pilot-scale experiment on anaerobic bioreactor landfills in China. Waste Manage 27:893–901

    Google Scholar 

  96. Johansson N (2016) Landfill mining: Institutional challenges for the implementation of resource extraction from waste deposits. Linkoping University Electronic Press, Linkoping, p 1799

    Google Scholar 

  97. Jones PT, Geysen D, Tielemans Y, Van Passel S, Pontikes Y, Blanpain B et al (2013) Enhanced Landfill Mining in view of multiple resource recovery: a critical review. J Clean Prod 55:45–55. https://doi.org/10.1016/j.jclepro.2012.05.021

    Article  Google Scholar 

  98. Kaartinen T, Sormunen K, Rintala J (2013) Case study on sampling, processing and characterization of landfilled municipal solid waste in the view of landfill mining. J Clean Prod 55:56–66. https://doi.org/10.1016/j.jclepro.2013.02.036

    Article  Google Scholar 

  99. Kadambala R, Powell J, Singh K, Townsend TG (2016) Evaluation of a buried vertical well leachate recirculation system for municipal solid waste landfills. Waste Manage Res 34(12):1300–1306

    Google Scholar 

  100. Khire MV, Mukherjee M (2007) Leachate injection using vertical wells in bioreactor landfills. Waste Manage 27:1233–1247

    Google Scholar 

  101. Kilmer KS, Tustin J (1999) Rapid landfill stabilization and improvements in leachate quality by leachate recirculation. In: Proceedings from SWANA’s 4th Annual Landfill Symposium, Denver, CO, pp 28–30

  102. Kim J, Pohland FG (2003) Process enhancement in anaerobic bioreactor landfills. WaterSci Technol 48(4):29–36

    CAS  Google Scholar 

  103. Krook J, Svensson N, Eklund M (2012) Landfill mining: a critical review of two decades of research. Waste Manage. https://doi.org/10.1016/j.wasman.2011.10.015

    Article  Google Scholar 

  104. Kumar S, Chiemchaisri C, Mudhoo A (2011) Bioreactor landfill technology in municipal solid waste treatment: an overview. Crit Rev Biotechnol 31(1):77–97. https://doi.org/10.3109/07388551.2010.492206

    Article  CAS  Google Scholar 

  105. Kumar G, Reddy KR (2019) Rapid stabilization of municipal solid waste in bioreactor landfills: predictive performance using coupled modeling. Global NEST J 21(4):505–512. https://doi.org/10.30955/gnj.002985

    Article  CAS  Google Scholar 

  106. Kumar G, Reddy KR, McDougall J (2020) Numerical modeling of coupled biochemical and thermal behavior of municipal solid waste in landfills. Comput Geotech 128:103836. https://doi.org/10.1016/j.compgeo.2020.103836

    Article  Google Scholar 

  107. Kumar G, Reddy KR (2021) Effects of leachate recirculation system variables on long-term bioreactor landfill performance using coupled thermo-hydro-bio-mechanical model. Int J Geomech. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001990

    Article  Google Scholar 

  108. Kuppers B, Parrodi JCH, Lopez CG, Pomberger R, Vollprecht D (2019) Potential of sensor-based sorting in enhanced landfill mining. Detritus 8:24–30. https://doi.org/https://doi.org/10.31025/2611-4135/2019.13875

  109. La H, Hettiaratchi JPA, Dunfield P, Achari G (2018) Biofiltration of methane. Biores Technol 268:759–772

    CAS  Google Scholar 

  110. Lagerkvist A, Chen H (1993) Control of two step anaerobic degradation of municipal solid waste (MSW) by enzyme addition. Water Sci Technol 27(2):47–56

    CAS  Google Scholar 

  111. Laner D, Esguerra JL, Krook J, Horttanainen M, Kriipsalu M, Rosendal RM, Stanisavljević N (2019) Systematic assessment of critical factors for the economic performance of landfill mining in Europe: what drives the economy of landfill mining? Waste Manage 95:674–686

    Google Scholar 

  112. Leckie JO, Pacey JG, Halvadakis C (1979) Landfill management with moisture control. J Environ Eng Div 105(2):337–355

    Google Scholar 

  113. Liu H, Huyan Z, Cui C, Luo X, Jiang X (2021) Evaluation of leachate recirculation effect on the acceleration of waste mineralization process by using a coupled numerical model. Adv Civil Eng 2021:10. https://doi.org/10.1155/2021/8832085

    Article  Google Scholar 

  114. Lopez CG, Kuppers B, Clausen A, Pretz T (2018) Landfill mining: a case study regarding sampling, processing and characterization of excavated waste from an Austrian landfill. Detritus 2:29–45. https://doi.org/10.31025/2611-4135/2018.13664

  115. Lopez CG, Nia A, Parrodib JCH, Kuppersc B, Pretza T (2019) Characterization of landfill mining material after ballistic separation to evaluate material and energy recovery potential. Detritus 8(1):5–23

    Google Scholar 

  116. Luo Z, Chen W, Wen P, Jiang G, Li Q (2019) Impact of leachate recirculation frequency on conversion of carbon and nitrogen in a semi-aerobic bioreactor landfill. Environ Sci Pollut Res 26:13354–13365

    CAS  Google Scholar 

  117. Manzur SR, Hossain S, Kemler V, Khan MS (2016) Monitoring extent of moisture variations due to leachate recirculation in an ELR/bioreactor landfill using resistivity imaging. Waste Manage 55:38–48

    CAS  Google Scholar 

  118. Marella G, Raga R (2014) Use of the contingent valuation method in the assessment of a landfill mining project. Waste Manage. https://doi.org/10.1016/j.wasman.2014.03.018

    Article  Google Scholar 

  119. Mata-Alvarez J (2003) Fundamentals of the anaerobic digestion process. Biomethanization of the organic fraction of municipal solid wastes, pp 1–20.

  120. Matsuto T, Zhang X, Matsuo T, Yamada S (2015) Onsite survey on the mechanism of passive aeration and air flow path in a semi-aerobic landfill. Waste Manage 36:204–212

    Google Scholar 

  121. Meegoda JN, Bhuvaneshwari S, Hettiaratchi PA, Hettiarachchi H (2016) Comprehensive model for anaerobic degradation in bioreactor landfills. Curr Environ Eng 3(2):181–193

    CAS  Google Scholar 

  122. Meegoda JN, Soliman A, Hettiaratchi JPA, Agbapke M (2019) Resource mining for a bioreactor landfill. Curr Environ Eng 6(1):17–34

    CAS  Google Scholar 

  123. Monkare TJ, Palmroth MR, Rintala JA (2016) Characterization of fine fraction mined from two Finnish landfills. Waste Manage 47:34–39

    CAS  Google Scholar 

  124. Monkare T, Palmroth MRT, Sormunen K, Rintala J (2019) Scaling up the treatment of the fine fraction from landfill mining: mass balance and cost structure. Waste Manage. https://doi.org/10.1016/j.wasman.2019.02.032

    Article  Google Scholar 

  125. Morris JWF, Vasuki NC, Baker JA, Pendleton CH (2003) Findings from long-term monitoring studies at MSW landfill facilities with leachate recirculation. Waste Manage 23(7):653–666

    CAS  Google Scholar 

  126. Muaaz-Us-Salam S, Cleall PJ (2019) Harbottle MJ (2019) The case for examining fluid flow in municipal solid waste at the pore-scale—a review. Waste Manage Res 37(4):315–332

    CAS  Google Scholar 

  127. Nanda S, Berruti F (2020) Municipal solid waste management and landfilling technologies: a review. Environ Chem Lett. https://doi.org/10.1007/s10311-020-01100-y

    Article  Google Scholar 

  128. Ni Z, Liu J, Girotto F, Cossu R, Qi G (2016) Targeted modification of organic components of municipal solid waste by short-term pre-aeration and its enhancement on anaerobic degradation in simulated landfill bioreactors. Biores Technol 216:250–259

    CAS  Google Scholar 

  129. Nikiema J, Heitz M (2010) The use of inorganic packing materials during methane biofiltration. Int J Chem Eng. https://doi.org/10.1155/2010/573149

    Article  Google Scholar 

  130. Niemczyk M, Berenjkar P, Wilkinson N, Lozecznik S, Sparling R, Yuan Q (2021) Enhancement of CH4 oxidation potential in bio-based landfill cover materials. Process Saf Environ Prot 146:943–951

    CAS  Google Scholar 

  131. Nwaokorie KJ, Bareither CA, Mantell SC, Leclaire DJ (2018) The influence of moisture enhancement on landfill gas generation in a full-scale landfill. Waste Manage 79:647–657

    Google Scholar 

  132. Omar H, Rohani S (2017) The mathematical model of the conversion of a landfill operation from anaerobic to aerobic. Appl Math Model 50:53–67

    Google Scholar 

  133. Oonk H, van Zomeren A, Rees-White TC, Beaven RP, Hoekstra N, Luning L et al (2013) Enhanced biodegradation at the Landfill bioreactor test-cell. Waste Manage 33:2048–2060

    CAS  Google Scholar 

  134. Otieno FAO (1994) Stabilization of solid waste through leachate recycling. Waste Manage Res 12(1):93–100

    CAS  Google Scholar 

  135. Pacey J (2001) Bioreactor landfill: an overview perspective. MSW Manage 10(6):68–71

    Google Scholar 

  136. Pacey J, Augenstein D, Morck R, Reinhart D, Yazdani R (1999) The bioreactor landfill-an innovation in solid waste management. MSW management

  137. Parrodi JCH, Lucas H, Gigantino M, Sauve G, Esguerra JL, Einhäupl P et al (2019) Integration of resource recovery into current waste management through (Enhanced) landfill mining. Detritus 8(1):141–156

    Google Scholar 

  138. Pecorini I, Iannelli R (2020) Characterization of excavated waste of different ages in view of multiple resource recovery in landfill mining. Sustainability 12(5):1780. https://doi.org/10.3390/su12051780

    Article  CAS  Google Scholar 

  139. Pecorini I, Albini E, Rossi E, Iannelli R, Raco B, Lippo G (2018) Landfill mining: a case study on characterization of excavated waste. Procedia Environ Sci Eng Manage 5:153–158

    CAS  Google Scholar 

  140. Perdikea K, Mehrotra AK, Hettiaratchi JPA (2008) Study of thin biocovers (TBC) for oxidizing uncaptured methane emissions in bioreactor landfills. Waste Manage 28:1364–1374. https://doi.org/10.1016/j.wasman.2007.06.017

    Article  CAS  Google Scholar 

  141. Pohland FG (1975) sanitary landfill stabilization with leachate recycle and residual treatment. Georgia Institute of Technology, Georgia

    Google Scholar 

  142. Pohland FG (1980) Leachate recycle as landfill management option. Journal of the Environmental Engineering, Division, pp 1057–1069

  143. Pohland FG, Al-Yousfi AB (1994) Design and operation of landfills for optimum stabilization and biogas production. Water Sci Technol 30:117–124

    CAS  Google Scholar 

  144. Pohland FG, Al-Yousfi AB, Reinhart DR (2003) Anaerobic digestion of organic solid waste in bioreactor landfills. ChemInform 34(29)

  145. Quaghebeur M, Laenen B, Geysen D, Nielsen P, Pontikes Y, Van Gerven T, Spooren J (2013) Characterization of landfilled materials: Screening of the enhanced landfill mining potential. J Clean Prod 55:72–83. https://doi.org/10.1016/j.jclepro.2012.06.012

    Article  CAS  Google Scholar 

  146. Raga R, Cossu R (2014) Landfill aeration in the framework of a reclamation project in Northern Italy. Waste Manage 34:683–691

    CAS  Google Scholar 

  147. Rajbhandari B, Hettiaratchi JPA, Hurtado O (2006) Thin Biocovers (TBC): a novel approach in controlling methane emissions from landfills accepting biodegradable organic waste. Solid Waste Technol Manage 562–572

  148. Rasapoor M, Young B, Brar R, Baroutian S (2021) Enhancement of landfill gas generation from aged waste by a combination of moisture adjustment and application of biochar and neutral red additives: A field-scale study. Fuel 283:118932

    CAS  Google Scholar 

  149. Reinhart DR, McCreanor PT, Townsend T (2002) The bioreactor landfill: Its status and future. Waste Manage Res 20:172–186

    CAS  Google Scholar 

  150. Reinhart DR (1996) Full-scale experiences with leachate recirculating landfills: case studies. Waste Manage Res. https://doi.org/10.1006/wmre.1996.0036

    Article  Google Scholar 

  151. Saffira N, Kristanto GA (2018) The effect of leachate recirculation with enzyme cellulase addition on waste stability in landfill bioreactor. E&ES 106(1):12119

    Google Scholar 

  152. Sah RK, Warith MA, Hettiaratchi P (2006) Stabilization of paper waste in bioreactor landfills using soyabean peroxidase enzyme. In: 10th Environmental Engineering Specialty Conference

  153. Sandoval-Cobo JJ, Casallas-Ojeda MR, Carabalí-Orejuela L, Muñoz-Chávez A, Caicedo-Concha DM, Marmolejo-Rebellón LF, Torres-Lozada P (2020) Methane potential and degradation kinetics of fresh and excavated municipal solid waste from a tropical landfill in Colombia. Sustain Environ Res 30:1–11

    Google Scholar 

  154. Shin HS, Hwang EJ, Park BS, Sakai T (1999) The effects of seed inoculation on the rate of garbage composting. Environ Technol 20(3):293–300

    CAS  Google Scholar 

  155. Soh IE, Hettiaratchi JPA (2009) Potential lateral migration of leachate in flushing bioreactor landfills during aggressive leachate recirculation. Pract Period Hazard Toxic Radioact Waste Manage 13(3):174–178

    CAS  Google Scholar 

  156. Solan PJ, Dodd V, Curran TP (2010) Evaluation of the odour reduction potential of alternative cover materials at a commercial landfill. Biores Technol 101:1115–1119

    CAS  Google Scholar 

  157. Sormunen K, Ettala M, Rintala J (2008) Detailed internal characterisation of two Finnish landfills by waste sampling. Waste Manage. https://doi.org/10.1016/j.wasman.2007.01.003

    Article  Google Scholar 

  158. Spencer R (1990) Landfill space reuse. BioCycle

  159. Sun Y, Sun X, Zhao Y (2011) Comparison of semi-aerobic and anaerobic degradation of refuse with recirculation after leachate treatment by aged refuse bioreactor. Waste Manage 31:1202–1209

    CAS  Google Scholar 

  160. Swati M, Karthikeyan OP, Kurian J, Visvanathan., C., Nagendran, R. (2011) Pilot-scale simulation of landfill bioreactor and controlled dumping of fresh and partially stabilized municipal solid waste in a tropical developing country. J Hazard Toxic Radioact Waste 15(4):321–330

    CAS  Google Scholar 

  161. Tahmoorian F, Khabbaz H (2020) Performance comparison of a MSW settlement prediction model in Tehran landfill. J Environ Manage. https://doi.org/10.1016/j.jenvman.2019.109809

    Article  Google Scholar 

  162. Tallec G, Bureau C, Peu P, Benoist JC, Lemunier M, Budka A (2009) Impact of nitrate-enhanced leachate recirculation on gaseous releases from a landfill bioreactor cell. Waste Manage 29(7):2078–2084

    CAS  Google Scholar 

  163. Townsend TG (1996) Leachate recycle at solid waste landfills using horizontal injection. University of Florida, Florida

    Google Scholar 

  164. Townsend TG, Miller WL, Lee HJ, Earle JFK (1996) Acceleration of landfill stabilization using leachate recycle. J Environ Eng 122(4):263–268

    CAS  Google Scholar 

  165. Van der Zee DJ, Achterkamp MC, De Visser BJ (2004) Assessing the market opportunities of landfill mining. Waste Manage 24(8):795–804. https://doi.org/10.1016/j.wasman.2004.05.004

    Article  Google Scholar 

  166. Van Haaren R, Themelis NJ, Barlaz M (2010) LCA comparison of windrow composting of yard wastes with use as alternative daily cover (ADC). Waste Manage 30:2649–2656

    Google Scholar 

  167. Vigneron V, Bouchez T, Bureau C, Mailly N, Mazeas L, Duquennoi C (2005) Leachate pre-treatment strategies before recirculation in landfill bioreactors. Water Sci Technol 52(1–2):289–297

    CAS  Google Scholar 

  168. Vollprecht D, Machiels L, Jones PT (2021) The EU training network for resource recovery through enhanced landfill mining—a review. Processes 9(2):394

    CAS  Google Scholar 

  169. Wagner TP, Raymond T (2015) Landfill mining: case study of a successful metals recovery project. Waste Manage. https://doi.org/10.1016/j.wasman.2015.06.034

    Article  Google Scholar 

  170. Walsh P, O’Leary P (2002) Bioreactor landfill design and operation. Waste Age, June, p 72–75

  171. Wang Q, Matsufuji Y, Huang LDQ, Hirano F, Tanaka F (2006) Research on leachate recirculation from different types of landfills. Waste Manage 26:815–824

    Google Scholar 

  172. Warith MA, Zekry W, Gawry N (1999) Effect of leachate recirculation on municipal solid waste biodegradation. Water Qual Res J Can 34(2):267–280

    CAS  Google Scholar 

  173. White JK, Beaven RP, Powrie W, Knox K (2011) Leachate recirculation in a landfill: some insights obtained from the development of a simple 1-D model. Waste Manage 31:1210–1221

    CAS  Google Scholar 

  174. Wolfsberger T, Hollen D, Sarc R, Aldrian A, Budischowsky A, Zoscher A, et al (2014) Landfill mining -case study: characterization and treatment of excavated waste from Austrian sanitary landfill sites and estimation of the resource potential. ISWA World Congress 2014, (May 2016)

  175. Wu C, Shimaoka T, Nakayama H, Komiya T, Chai X (2016) Stimulation of waste decomposition in an old landfill by air injection. Biores Technol 222:66–74

    CAS  Google Scholar 

  176. Xu Q, Kim H, Jain P, Townsend TG (2012) Hydrologic evaluation of landfill performance (HELP) modeling in bioreactor landfill design and permitting. J Mater Cycles Waste Manage 14:38–46

    CAS  Google Scholar 

  177. Xu Q, Tian Y, Kim H, Ko JH (2016) Comparison of biogas recovery from MSW using different aerobic-anaerobic operation modes. Waste Manage 56:190–195

    CAS  Google Scholar 

  178. Xu HX, Zhang HJ (2019) Intermittent leachate injection in bio-reactor landfills with bonded whole waste tyres. Earth Environ Sci. https://doi.org/10.1088/1755-1315/351/1/012039

    Article  Google Scholar 

  179. Yi S (2019) Resource recovery potentials by landfill mining and reclamation in South Korea. J Environ Manage 242:178–185

    Google Scholar 

  180. Yuen STS (2001) Bioreactor landfills: do they work?. In: 2nd ANZ conference on environmental geotechnics, Newcastle, Australia

  181. Yun J, Jung H, Choi H, Oh KC, Jeon JM, Ryu HW, Cho KS (2018) Performance evaluation of an on-site biocomplex textile as an alternative daily cover in a sanitary landfill, South Korea. Waste Manage Res 36(12):1137–1145. https://doi.org/10.1177/0734242X18806996

    Article  CAS  Google Scholar 

  182. Zaini IN, López CG, Pretz T, Yang W, Jönsson PG (2019) Characterization of pyrolysis products of high-ash excavated-waste and its char gasification reactivity and kinetics under a steam atmosphere. Waste Manage 97:149–163. https://doi.org/10.1016/j.wasman.2019.08.001

    Article  CAS  Google Scholar 

  183. Zhou C, Gong Z, Hu J, Cao A, Liang H (2015) A cost-benefit analysis of landfill mining and material recycling in China. Waste Manage 35:191–198. https://doi.org/10.1016/j.wasman.2014.09.029

    Article  Google Scholar 

  184. Zou L, Ma C, Liu J, Li M, Ye M, Qian G (2016) Pretreatment of food waste with high voltage pulse discharge towards methane production enhancement. Biores Technol 222:82–88

    CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the funding received from the Natural Sciences and Engineering Research Council (NSERC) of Canada; CEERE (Centre for Environmental Engineering Research and Education) at the University of Calgary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Patrick A. Hettiaratchi.

Ethics declarations

Conflict of Interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hettiaratchi, J.P.A., Jayasinghe, P.A., Yarandy, T.A. et al. Innovative Practices to Maximize Resource Recovery and Minimize Greenhouse Gas Emissions from Landfill Waste Cells: Historical and Recent Developments. J Indian Inst Sci 101, 537–556 (2021). https://doi.org/10.1007/s41745-021-00230-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-021-00230-8

Keywords

Navigation