Skip to main content

Advertisement

Log in

Characterization of carbon dioxide fluxes in tropical lowland flooded rice ecology

  • Article
  • Published:
Paddy and Water Environment Aims and scope Submit manuscript

Abstract

Characterization of carbon dioxide (CO2) fluxes was investigated in tropical lowland flooded rice ecology using open path eddy covariance (EC) technique during dry season of 2009–2010. Select environmental variables like air and soil temperatures, soil moisture, net radiation, photosynthetically active radiation, vapour pressure deficit and soil heat flux were monitored throughout the season and correlated with half hourly CO2 fluxes. The study was conducted to gain insight of environmental impact in terms of carbon (C) budget in a submerged soil of tropical region planted to rice. Total C budget integrated over dry season expressed in terms of net ecosystem CO2 exchange (NEE) was − 392 g C m−2, while the gross primary production (GPP) and ecosystem respiration (RE) were 731 and 339 g C m−2, respectively. Seasonal daily mean NEE, GPP and RE were − 3.73, 6.96 and 3.23 g C m−2 d−1, respectively. The ratio of RE/GPP in flooded rice field was 0.46. The NEE was negative during daytime and positive during nighttime, i.e. rice paddy ecosystem acted as a CO2 sink and source during daytime and night hours, respectively. Lowest negative NEE was found during heading to flowering stage (− 26.93 µmol CO2 m−2 s−1) of crop growth due to estimated highest values of GPP (32.34 µmol CO2 m−2 s−1) and RE (5.42 µmol CO2 m−2 s−1). On seasonal basis flooded rice ecology behaved as net sink for CO2. This was attributed to higher photosynthetic capacity of lowland rice to convert atmospheric C into organic compounds and slow organic matter decomposition in flooded soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alberto MCR, Wassmann R, Hirano T, Miyata A, Kumar A, Padre A, Amante M (2009) CO2/heat fluxes in rice fields: comparative assessment of flooded and non-flooded fields in the Philippines. Agric Meteorol 149:1737–1750

    Google Scholar 

  • Amthor JS (1989) Respiration and crop productivity. Springer, New York

    Google Scholar 

  • Amthor JS (2000) The McCree–de wit–penning de vries–thornley respiration paradigms: 30 years later. Ann Bot 86:1–20

    CAS  Google Scholar 

  • Aubinet M, Grelle A, Ibrom A, Rannik U, Moncrieff J, Granier A, Grunwald T, Morgenstern K, Oilegaard K, Rebmann C, Snijders W, Valentini R, Vesala T (2000) Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology. Adv Ecol Res 30:113–175

    CAS  Google Scholar 

  • Baldocchi DD (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Glob Change Biol 9:479–492

    Google Scholar 

  • Barker DH, Stark LR, Zimpfer JF, McLtcie ND, Smith SD (2005) Evidence of drought-induced stress on biotic crust moss in the Mojave Desert. Plant Cell Environ 28:939–947

    Google Scholar 

  • Bhattacharyya P, Neogi S, Roy KS, Dash PK, Tripathi R, Rao KS (2013a) Net ecosystem CO2 exchange and carbon cycling in tropical lowland flooded rice ecosystem. Nutr Cycl Agroecosyst 95:133–144

    CAS  Google Scholar 

  • Bhattacharyya P, Neogi S, Roy KS, Rao KS (2013b) Gross primary production, ecosystem respiration and net ecosystem exchange in Asian rice paddy: an eddy covariance based approach. Curr Sci 104:67–75

    CAS  Google Scholar 

  • Bhattacharyya P, Neogi S, Roy KS, Dash PK, Nayak AK, Mohapatra T (2014) Tropical low land rice ecosystem is a net carbon sink. Agr Ecosyst Environ 189:127–135

    Google Scholar 

  • Black TA, den Hartog G, Neumann HH, Blanken P, Yang P, Medic Z, Chen S, Russel C, Voroney P, Staebler R (1996) Annual cycles of water vapor and carbon dioxide fluxes in and above a boreal aspen forest. Glob Change Biol 2:219–229

    Google Scholar 

  • Black K, Bolger T, Darvis P, Nieuwenhuis M, Reidy B, Saiz G, Tobin B, Osborne B (2007) Inventory and eddy covariance-based estimates of annual carbon sequestration in a sitka spruce (Picea sitchensis (Bong.) Carr.) forest ecosystem. Eur J For Res 126:167–178

    CAS  Google Scholar 

  • Briggs JM, Knapp AK (1995) Interannual variability in primary production in tallgrass prairie: climate, soil moisture, topographic position and fire as determinants of aboveground biomass. Am J Bot 82:1024–1030

    Google Scholar 

  • Buchmann N (2000) Biotic and abiotic factors controlling soil respiration rates in Picea abies strands. Soil Biol Biochem 32:1625–1635

    CAS  Google Scholar 

  • Campbell CS, Heilman JL, Mclnnes KJ, Wilson LT, Medley JC, Wu G, Cobos DR (2001) Diel and seasonal variation in CO2 flux of irrigated rice. Agric Meteorol 108:15–27

    Google Scholar 

  • Carrara A, Kowalsk AS, Neirynck J, Janssens IA, Yuste JC, Ceulemans R (2003) Net ecosystem CO2 exchange of mixed forest in Belgium over 5 years. Agric Meteorol 119:209–227. https://doi.org/10.1016/S0168-1923(03).00120-5

    Article  Google Scholar 

  • Chapin FS, Woodwell GM, Randerson JT, Rastetter E, Lovett GM, Baldocchi DD, Clark DA, Harmon ME, Schimel DS, Valentini R, Wirth C, Aber JD, Cole JJ, Gouden ML, Harden JM, Heimann M, Howarth RW, Matson PA, McGuire AD, Melillo JM, Mooney HA, Neff JC, Houghton RA, Pace ML, Ryan MG, Running SW, Sala OE, Schlesinger WH, Schulze (2006) Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems 9(7):1041–1050

    CAS  Google Scholar 

  • Chatterjee D, Tripathi R, Chatterjee S, Debnath M, Shahid M, Bhattacharyya P, Swain CK, Tripathy R, Bhattacharya BK, Nayak AK (2018) Characterization of land surface energy luxes in a tropical lowland rice paddy. Theor Appl Climatol 136:157–168. https://doi.org/10.1007/s00704-018-2472-y

    Article  Google Scholar 

  • Chatterjee D, Nayak AK, Vijayakumar S, Debnath M, Chatterjee S, Swain CK, Bihari P, Mohanty S, Tripathi R, Shahid Md, Kumar A, Pathak H (2019) Water vapor flux in tropical lowland rice. Environ Monit Assess 191(9):1–5

    Google Scholar 

  • Chatterjee D, Swain CK, Chatterjee S, Bhattacharyya P, Tripathi R, Lal B, Gautam P, Shahid Md, Dash PK, Dhal B, Nayak AK (2020a) Is the energy balance in a tropical lowland rice is perfectly closed? Atmosfera. https://doi.org/10.20937/ATM.52734

    Article  Google Scholar 

  • Chatterjee S, Swain CK, Nayak AK, Chatterjee D, Bhattacharyya P, Mahapatra SS, Debnath M, Tripathi R, Guru PK, Dhal B (2020b) Partitioning of eddy covariance-measured net ecosystem exchange of CO2 in tropical lowland paddy. Paddy Water Environ. https://doi.org/10.1007/s10333-020-00806-7

    Article  Google Scholar 

  • Ciais P, Wattenbach M, Vuichard N, Smith P, Piao SL, Don A, Luyssaert S, Janssens I, Bondeau A, Dechow R, Leip A, Smith Pc, Beer C, van der Werf GR, Gervois S, Van Oost K, Tmelleri E, Freibauer A, Schulze ED (2010) The European greenhouse gas balance revisited. Part 2: croplands. Glob Change Biol 16:1409–1428

    Google Scholar 

  • Crafts-Brandner SJ, Salvucci ME (2000) Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2. Proc Natl Acad Sci USA 97(24):13430–13435

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davidson EA, Janssens IA, Luo Y (2006) On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Glob Change Biol 12:154–164

    Google Scholar 

  • Dean JA (1999) Thermodynamic properties: enthalpies and gibbs (free) energies of formation, entropies and heat capacities of elements and compounds. Lange’s handbook of chemistry, 15th edn. McGraw Hill, Inc, New York, USA, pp 91–184

    Google Scholar 

  • Directorate of economics and statistics (DOES) (2011) Department of agriculture and cooperation, Ministry of Agriculture (MOA), Government of India (GOI). http://agricoop.nic.in/agristatistics.htm

  • Falge E, Baldocci D, Olson R, Anthoni P, Aubinet M, Bernhofer C, Burba G, Ceulemans R, Clement R, Dolman H, Granier A, Gross P, Grunwald T, Hollinger D, Jensen NO, Katul G, Keronen P, Kowalski A, Lai CT, Law BE, Meters T, Moncrieff J, Moors E, Munger JW, Pilegaard K, Rannik U, Rebmann C, Suyker A, Tenhunen J, Tu K, Verma S, Vesala T, Wilson K, Wofsy S (2001) Gap filling strategies for defensible annual sums of net ecosystem exchange. Agric Meteorol 107:43–69

    Google Scholar 

  • Falge E, Baldocchi DD, Tenhunen J, Aubinet M, Bakwin P, Berbigier P, Bernhofer Ch, Burba GG, Clement R, Davis KJ, Elbers JA, Goldstein AH, Grelle A, Granier A, Guomundsson J, Hollinger D, Kowalski A, Katul G, Law B, Mali Y, Meyers T, Monson R, Munger JW, Oechel W, Paw UKT, Pilegaard K, Rannik U, Rebmann C, Suyker AE, Valentini R, Wilson K, Wofsy S (2002) Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements. Agric Meteorol 113:53–74

    Google Scholar 

  • Field CB (2001) Plant physiology of the ‘missing’ carbon sink. Plant Physiol 125:25–28

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fierer N, Schimer JP (2003) A proposed mechanism for the pulse in carbon dioxide production commonly observed following rapid rewetting of a dry soil. Soil Sci Soc Am J 67:798–805

    CAS  Google Scholar 

  • Foken Th, Wichura B (1996) Tools for quality assessment of surface-based flux measurements. Agric Meteorol 78:83–105

    Google Scholar 

  • Foth HD (1990) Physical properties of soils. In: Fundamentals of soil science. Wiley, New York, USA, pp 57–61

    Google Scholar 

  • Glenn AJ, Flanagan LB, Syed KH, Carlson PJ (2006) Comparison of net ecosystem CO2 exchange in two peat lands in western Canada with contrasting dominant vegetation. Sphagnum and carex. Agric Meteorol 140:115–135

    Google Scholar 

  • Goulden ML, Miller SD, da Rocha HR, Menton MC, de Freitas HC, Figueira AMS, de Sousa CAD (2004) Diel and seasonal patterns of tropical forest CO2 exchange. Ecol Appl 14(4):S42–S54

    Google Scholar 

  • Greco S, Baldocchi DD (1996) Seasonal variations of CO2 and water vapor exchange rates over a temperate deciduous forest. Glob Change Biol 2:183–198

    Google Scholar 

  • Hirata R, Hiran T, Saigusa N, Fujinuma Y, Inukai K, Kitamori Y, Takahashi Y, Yamamoto S (2007) Seasonal and interannual variations in carbon dioxide exchange of a temperate larch forest. Agric Meteorol 147:110–124

    Google Scholar 

  • Huxman TE, Cable JM, Ignance DD, Eilts JA, English NB, Weltzin J, Williams DG (2004) Response of net ecosystem gas exchange to a simulated precipitation pulse in semi-arid grassland: the role of native versus non-native grasses and soil texture. Oecologia 141:295–305

    PubMed  Google Scholar 

  • IPCC (2007) Climate Change-Synthesis report. In: An assessment of the Intergovernmental panel on Climate Change. Plenary XXVII, Valencia, Spain, 12–17 November, pp 52

  • IPCC (2019) Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. [Shukla PR, Skea J, Calvo Buendia E, Masson-Delmotte V, Pörtner H.-O, Roberts DC, Zhai P, Slade R, Connors S, van Diemen R, Ferrat M, Haughey E, Luz S, Neogi S, Pathak M, Petzold J, Portugal Pereira J, Vyas P, Huntley E, Kissick K, Belkacemi M, Malley J (eds.)]. In press

  • Jarvis PG, Leverenz JM (1983) Productivity of temperate, deciduous and evergreen forests. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology, ecosystem processes: mineral cycling, productivity and man’s influence. Springer, Berlin, pp 233–261

    Google Scholar 

  • Jassal RS, Black TA, Novak MD, Guay G, Nesic Z (2008) Effect of soil water stress on soil respiration and its temperature sensitivity in an 18-year-old temperate Douglas-fir stand. Glob Change Biol 14:1305–1318

    Google Scholar 

  • Jones HG (1992) Plants and microclimate: a quantitative approach to environmental plant physiology, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows. Oxford University Press, New York, p 289

    Google Scholar 

  • Lalrammawia C, Paliwal K (2010) Seasonal changes in net ecosystem exchange of CO2 and respiration of Cenchrus ciliaris L. grassland ecosystem in semi-arid tropics: an eddy covariance measurement. Curr Sci 98(9):1211–1218

    Google Scholar 

  • Larcher W (1995) Physiological plan t ecology: ecophysiology and stress physiology of functional groups, 3rd edn. Springer, Berlin

    Google Scholar 

  • Lauenroth WK, Sala OE (1992) Long-term forage production of North American shortgrass steppe. Ecol Appl 2:397–403

    CAS  PubMed  Google Scholar 

  • Law BE, Falge E, Gu L, Baldocchi D, Bakwin P, Berbigier P, Davis KJ, Dolman H, Falk M, Fuentes J, Goldstein AH, Granier A, Grelle A, Hollinger D, Janssens I, Jarvis P, Jensen NO, Katul G, Malhi Y, Matteucci G, Monson R, Munger JW, Oechel W, Olson R, Pilegaard K, Paw UKT, Thorgeirsson H, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2002) Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agric Meteorol 113:97–120

    Google Scholar 

  • Mahrt L, Vickers D (2002) Relationship of area-averaged carbon dioxide and water vapour fluxes to atmospheric variables. Agric Meteorol 112:195–202. https://doi.org/10.1016/S0168-1923(02)00076-5

    Article  Google Scholar 

  • Miyata A, Leuning R, Denmead OW, Kim J, Harazono Y (2000) Carbon dioxide and methane fluxes from an intermittently flooded paddy field. Agric Meteorol 102:287–303

    Google Scholar 

  • Mowjood MIM, Ishiguro K, Kasubuchi T (1997) Effect of convection in ponded water on the thermal regime of a paddy field. Soil Sci 162(8):583–587

    CAS  Google Scholar 

  • Neogi S, Bhattacharyya P, Roy KS, Panda BB, Nayak AK, Rao KS, Manna MC (2014) Soil respiration, labile carbon pools and enzyme activities as affected by tillage practices in a tropical ricemaize-cowpea cropping system. Environ Monit Assess 186:4223–4236

    CAS  PubMed  Google Scholar 

  • Neogi S, Dash P, Bhattacharyya P, Padhy S, Roy K, Nayak A (2020) Partitioning of total soil respiration into root, rhizosphere and basal-soil CO2 fluxes in contrasting rice production systems. Soil Res 58:592–601

    CAS  Google Scholar 

  • Nishimura S, Yonemura S, Minamikawa K, Yagi K (2015) Seasonal and diurnal variations in net CO2 flux throughout the year from soil in paddy field. J Geophys Res Biogeosci Res 120:661–675

    Google Scholar 

  • Pakoktom T, Aoki M, Kasemsap P, Boonyawat S, Attarod P (2009) CO2 and H2O Fluxes ratio in paddy fields of Thailand and Japan. Hydrol Res Lett 3:10–13

    Google Scholar 

  • Papale D, Valentini R (2003) A new assessment of European forests carbon exchanges by eddy fluxes and artificial neural network specialization. Glob Change Biol 9:525–535

    Google Scholar 

  • Patel NR, Dadhwal VK, Saha SK (2011) Measurement and scaling of carbon dioxide (CO2) exchanges in wheat using flux-tower and remote sensing. J Indian Soc Remote Sens. https://doi.org/10.1007/s12524-011-0107-1

    Article  Google Scholar 

  • Ponnamperuma FN (1984) Effects of flooding on soils. In: Kozlowski T (ed) Flooding and plant growth. Academic Press, New York, pp 9–45

    Google Scholar 

  • Porter H, Remkes C, Lambers H (1990) Carbon and nitrogen economy of 24 wild species differing in relative growth rate. Plant Physiol 94:621–627

    Google Scholar 

  • Potts DL, Huxman TE, Cable JM (2006) Antecedent moisture and seasonal precipitation influence the response of canopy-scale carbon and water exchange to rainfall pulses in a semi-arid grassland. J Ecol 94:23–30

    Google Scholar 

  • Qi Y, Xu M (2001) Separating the effects of moisture and temperature on soil CO2 efflux in a coniferous forest in the Sierra Nevada Mountains. Plant Soil 237(1):15–23

    CAS  Google Scholar 

  • Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grunwald T, Havrankova K, IIvesniemi H, Janous D, Knohl A, Laurrila T, Lohila A, Loustau D, Matteucci G, Meyers T, Miglietta F, Ourcival JM, Pumpanen J, Rambal S, Rotenberg E, Sanz M, Tenhunen J, Seufert G, Vaccari F, Vesala T, Yakir D, Valentini R (2005) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob Change Biol 11:1424–1439

    Google Scholar 

  • Ruimy A, Jarvis PG, Baldocchi DD, Sauiger B (1995) CO2 fluxes over plant canopies and solar radiation: a review. Adv Ecogical Res 26:1–81

    Google Scholar 

  • Sahrawat KL (2005) Fertility and organic matter in submerged rice soils. Curr Sci 88(5):735–739

    CAS  Google Scholar 

  • Saigusa N, Yamamoto S, Muruyama S, Kondo H, Nishimura H (2002) Gross primary production and net ecosystem exchange of a cool-temperate deciduous forest estimated by the eddy covariance method. Agric Meteorol 112:203–215. https://doi.org/10.1016/S0168-1923(02)00082-5

    Article  Google Scholar 

  • Saito M, Miyata A, Nagai H, Yamada T (2005) Seasonal variation of carbon dioxide exchange in rice paddy field in Japan. Agric Meteorol 135:93–109

    Google Scholar 

  • Saitoh K, Ishihara K (1987) Effect of vapor pressure deficit on photosynthesis of rice leaves with reference to light and CO2 utilization efficiency. Jpn J Crop Sci 56(2):163–170 (in Japanese with English abstract)

    CAS  Google Scholar 

  • Schulze ED, Wirth C, Heimann M (2000) Managing forests after Kyoto. Science 289:2058–2059

    CAS  PubMed  Google Scholar 

  • Sponseller RA (2007) Precipitation pulses and soil CO2 flux in a Sonoran Desert ecosystem. Glob Change Biol 13:426–436

    Google Scholar 

  • Swain CK, Bhattacharyya P, Singh NR, Neogi S, Sahoo RK, Nayak AK, Zhang G, Leclerc MY (2016) Net ecosystem methane and carbon dioxide exchange in relation to heat and carbon balance in lowland tropical rice. Ecol Eng 95:364–374

    Google Scholar 

  • Swain CK, Bhattacharyya P, Nayak AK, Singh NR, Neogi S, Chatterjee D, Pathak H (2018a) Dynamics of net ecosystem methane exchanges on temporal scale in tropical lowland rice. Atmos Environ 191:291–301

    CAS  Google Scholar 

  • Swain CK, Bhattacharyya P, Nayak AK, Singh NR, Chatterjee DR, Dash PK, Neogi S, Pathak H (2018b) Temporal variation of energy fluxes during dry season in tropical lowland rice. J Metrol Soc India 33:241–251

    Google Scholar 

  • Tanner CB, Thurtell GW (1969) Anemoclinometer measurements of reynolds stress and heat transport in the atmospheric surface layer. University of Wisconsin Tech. Rep., ECOM-66-G22-F, p 82

  • Towprayoon S, Smakgahn K, Poonkaew S (2005) Mitigation of methane and nitrous oxide emission from drained irrigated rice fields. Chemosphere 59:1547–1556

    CAS  PubMed  Google Scholar 

  • Tseng KH, Tsai JL, Alagesa A, Tsuang BJ, Yao MH, Kuo P (2010) Determination of methane and carbon dioxide fluxes during the rice maturity period in Taiwan by combining profice and eddy covariance measurements. Agric Meteorol 150:852–859

    Google Scholar 

  • Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water vapor transfer. Quat J R Meteorol Soc 106:85–100

    Google Scholar 

  • Xu M, Debiase TA, Qi Y, Goldstein A, Liu Z (2001) Ecosystem respiration in a young ponderosa pine plantation in the Sierra Nevada Mountains. Calif Tree Physiol 21:309–318

    CAS  Google Scholar 

  • Yu GR, Wen XF, Sun XM, Tanner BD, Lee XH, Chen JY (2006) Overview of ChinaFlux and evaluation of its eddy covariance measurement. Agric Meteorol 137:125–137

    Google Scholar 

  • Zhan W, Yuhui W (2011) Carbon flux dynamics and its environmental controlling factors in a desert steppe. Acta Ecol Sin 31:49–54

    Google Scholar 

  • Zhang WL, Chen SP, Miao HX, Lin GH (2008) Effects on carbon flux of conversion of grassland steppe to cropland in China. J Plant Ecol 32(6):1301–1311

    CAS  Google Scholar 

  • Zou J, Huang Y, Jiang J (2005) A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China: effects of water regime, crop residue, and fertilizer application. Glob Biogeochem Cycles. https://doi.org/10.1029/2004GB002401

    Article  Google Scholar 

Download references

Acknowledgements

Majority of the findings are from the Ph.D. dissertation of Mr. S. Neogi. This work was partly supported by the ICAR-NAIP, Component-4 (2031), operated at ICAR-NRRI and ICAR-National Fellow Project (Agri. Edn. /27/08/NF/2017-HRD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Neogi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neogi, S., Bhattacharyya, P. & Nayak, A.K. Characterization of carbon dioxide fluxes in tropical lowland flooded rice ecology. Paddy Water Environ 19, 539–552 (2021). https://doi.org/10.1007/s10333-021-00853-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10333-021-00853-8

Keywords

Navigation