Skip to main content

Advertisement

Log in

Classification of Events Using Local Pair Correlation Functions for Spatial Point Patterns

  • Published:
Journal of Agricultural, Biological and Environmental Statistics Aims and scope Submit manuscript

Abstract

Spatial point pattern analysis usually concerns identifying features in an observation window where there is also noise. This identification traditionally begins with studying the second-order properties of the point pattern, and it may be done locally by using local second-order characteristics (LISA). Some properties of this local structure solve the problem of classification into feature and clutter points. This paper proposes an estimator for local pair correlation LISA functions, discusses some of its properties and considers a particular distance to measure dissimilarities. Two classification procedures to separate feature from clutter points are described. One of them adopts multidimensional scaling and support vector machines, and the other employs bagged clustering. Simulations demonstrate the performance of the method, and it is applied to a dataset concerning earthquakes in a seismic nest located in Colombia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abramson IS (1982) On bandwidth variation in kernel estimates-a square root law. Ann Stat 10(4):1217–1223

    Article  MathSciNet  Google Scholar 

  • Anselin L (1995) Local indicators of spatial association-LISA. Geogr Anal 27(2):93–115

    Article  Google Scholar 

  • Baddeley A, Møller J, Waagepetersen R (2000) Non- and semi-parametric estimation of interaction in inhomogeneous point patterns. Stat Neerlandica 54:329–350

    Article  MathSciNet  Google Scholar 

  • Baddeley A, Rubak E, Turner R (2015) Spatial point patterns: methodology and applications with R. CRC Press, Boca Raton, Chapman & Hall interdisciplinary statistics series

  • Byers S, Raftery AE (1998) Nearest-neighbor clutter removal for estimating features in spatial point processes. J Am Stat Assoc 93(442):577–584

    Article  Google Scholar 

  • Carreira-Perpiñán MA (2006) Fast nonparametric clustering with gaussian blurring mean-shift. In: Proceedings of the 23rd international conference on machine learning, New York, pp 153–160

  • Chiu SN, Stoyan D, Kendall WS, Mecke J (2013) Stochastic geometry and its applications. Wiley series in probability and statistics, 3rd edn. John Wiley & Sons, Chichester

  • Cressie NAC (1993) Statistics for spatial data, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  • Cressie N, Collins LB (2001a) Analysis of spatial point patterns using bundles of product density LISA functions. J Agric Biol Environ Stat 6:118–135

    Article  MathSciNet  Google Scholar 

  • Cressie N, Collins LB (2001b) Patterns in spatial point locations: local indicators of spatial association in a minefield with clutter. Naval Res Log 48:333–347

    Article  MathSciNet  Google Scholar 

  • Dasgupta A, Raftery AE (1998) Detecting features in spatial point processes with clutter via model-based clustering. J Am Stat Assoc 93(441):294–302

    Article  Google Scholar 

  • Davies TM, Baddeley A (2018) Fast computation of spatially adaptive kernel estimates. Stat Comput 28(4):937–956

    Article  MathSciNet  Google Scholar 

  • de Leeuw J, Mair P (2009) Multidimensional scaling using majorization: SMACOF in R. J Stat Softw 31(3):1–30

    Article  Google Scholar 

  • Diggle PJ (2013) Statistical analysis of spatial and spatio-temporal point patterns. Chapman and Hall/CRC, Boca Raton

    Book  Google Scholar 

  • Dudoit S, Fridlyand J (2003) Bagging to improve the accuracy of a clustering procedure. Bioinformatics 19(9):1090–1099

    Article  Google Scholar 

  • Egozcue JJ, Díaz-Barrero JL, Pawlowsky-Glahn V (2006) Hilbert space of probability density functions based on Aitchison geometry. Acta Math Sin 22:1175–1182

    Article  MathSciNet  Google Scholar 

  • Fiksel T (1988) Edge-corrected density estimators for point processes. Statistics 19:67–75

    Article  MathSciNet  Google Scholar 

  • Getis A, Franklin J (2010) Second-order neighborhood analysis of mapped point patterns. Advances in spatial science. In: Anselin L, Rey SJ (eds) Perspectives on spatial data analysis. Springer, Berlin, pp 93–100

    Chapter  Google Scholar 

  • Getis A, Ord J (2010) The analysis of spatial association by use of distance statistics. Advances in spatial science. In: Anselin L, Rey SJ (eds) Perspectives on spatial data analysis. Springer, Berlin, pp 127–145

    Chapter  Google Scholar 

  • Getis A, Ord JK (1992) The analysis of spatial association by use of distance statistics. Geogr Anal 24(3):189–206

    Article  Google Scholar 

  • González JA, Rodríguez-Cortés FJ, Cronie O, Mateu J (2016) Spatio-temporal point process statistics: a review. Spat Stat 18:505–544

    Article  MathSciNet  Google Scholar 

  • Guan Y (2007) A composite likelihood cross-validation approach in selecting bandwidth for the estimation of the pair correlation function. Scand J Stat 34(2):336–346

    Article  MathSciNet  Google Scholar 

  • Hennig C (2007) Cluster-wise assessment of cluster stability. Comput Stat Data Anal 52(1):258–271

    Article  MathSciNet  Google Scholar 

  • Illian J, Penttinen A, Stoyan H, Stoyan D (2008) Statistical analysis and modelling of spatial point patterns. John Wiley & Sons, Chichester

    MATH  Google Scholar 

  • Jacques J, Preda C (2014) Functional data clustering: a survey. Adv Data Anal Classif 8(3):231–255

    Article  MathSciNet  Google Scholar 

  • Kruskal JB (1964) Nonmetric multidimensional scaling: a numerical method. Psychometrika 29(2):115–129

    Article  MathSciNet  Google Scholar 

  • Kulldorff M (1999) Spatial scan statistics: models, calculations, and applications

  • Loader C (1999) Local regression and likelihood. Springer, New York

    MATH  Google Scholar 

  • Matérn B (1986) Spatial variation. Lecture notes in statistics, vol 36. Springer, Berlin

  • Mateu J, Lorenzo G, Porcu E (2007) Detecting features in spatial point processes with clutter via local indicators of spatial association. J Comput Graph Stat 16(4):968–990

    Article  MathSciNet  Google Scholar 

  • Mateu J, Lorenzo G, Porcu E (2010) Features detection in spatial point processes via multivariate techniques. Environmetrics 21(3–4):400–414

    MathSciNet  Google Scholar 

  • Moraga P, Montes F (2011) Detection of spatial disease clusters with LISA functions. Stat Med 30(10):1057–1071

    Article  MathSciNet  Google Scholar 

  • Ohser J, Stoyan D (1981) On the second-order and orientation analysis of planar stationary point processes. Biom J 23:523–533

    Article  MathSciNet  Google Scholar 

  • Prieto GA, Beroza GC, Barrett SA, López GA, Florez M (2012) Earthquake nests as natural laboratories for the study of intermediate-depth earthquake mechanics. Tectonophysics 570–571:42–56

    Article  Google Scholar 

  • Ripley BD (1976) The second-order analysis of stationary point processes. J Appl Probab 13:255–266

    Article  MathSciNet  Google Scholar 

  • Ripley BD, Rasson JP (1977) Finding the edge of a Poisson forest. J Appl Probab 14(3):483–491

    Article  MathSciNet  Google Scholar 

  • Siino M, Rodríguez-Cortés FJ, Mateu J, Adelfio G (2019) Spatio-temporal classification in point patterns under the presence of clutter. Environmetrics 1–17

  • Steinwart I, Christmann A (2008) Support vector machines. Springer, New York

    MATH  Google Scholar 

  • Stoyan D, Stoyan H (1994) Fractals, random shapes, and point fields: methods of geometrical statistics. Wiley, Chichester

    MATH  Google Scholar 

  • Stoyan D, Stoyan H (1996) Estimating pair correlation functions of planar cluster processes. Biom J 38:259–271

    Article  Google Scholar 

  • Stoyan D, Stoyan H (2000) Improving ratio estimators of second order point process characteristics. Scand J Stat 27:641–656

    Article  MathSciNet  Google Scholar 

  • Székely GJ, Rizzo ML (2017) The energy of data. Ann Rev Stat Appl 4(1):447–479

    Article  Google Scholar 

  • Wong KY, Stoyan D (2021) Poles of pair correlation functions: When they are real? Ann Inst Stat Math 73:425–440

  • Zarifi Z, Havskov J, Hanyga A (2007) An insight into the Bucaramanga nest. Tectonophysics 443(1):93–105

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonatan A. González.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Expected Value of Pair Correlation LISA Functions

Theorem 1

For an inhomogeneous Poisson point process with intensity \(\lambda ({\mathbf {u}})\), and \(\Lambda (A):= \int _A \lambda ({\mathbf {u}})\mathrm {d}{\mathbf {u}}\) for any \(A\subset W\), the expected value with respect to the reduced Palm process (conditional on observing a point \({\mathbf {u}}_i\)) of a pair correlation LISA function \({\hat{g}}_{\epsilon }^{(i)}(r)\) is

$$\begin{aligned} {\mathbb {E}}_{!}\left[ {\hat{g}}_{\epsilon } ^{(i)}(r)\right] = \frac{\Lambda (W) + 1}{\lambda ({\mathbf {u}}_{i})|W|}. \end{aligned}$$

Proof

We follow the general developments of (Cressie and Collins 2001a, b). For any \(A\subset W\), we have \({\mathbb {E}}_![N(A)-1]=\Lambda (A)\), and \({\mathbb {E}}_![(N(A)-1)^2]=\Lambda ^2(A) + \Lambda (A).\) Conditional on observing an event at \({\mathbf {u}}_i\in X\), the expectation with respect to the reduced Palm process is

$$\begin{aligned} {\mathbb {E}}_{!}\left[ {\hat{g}}_{\epsilon }^{(i)}(r)\right] = \frac{1}{2\pi |W|r}{{\mathbb {E}}_{!}\left[ {\mathbb {E}}\left\{ (n-1) \left. \sum _{j\ne i}\frac{\kappa _{\epsilon }\left( \left\| {\mathbf {u}}_{i}-{\mathbf {u}}_{j}\right\| -r\right) 2\pi \Vert {\mathbf {u}}_{i}-{\mathbf {u}}_{j}\Vert }{{\lambda }({\mathbf {u}}_{i}){\lambda }({\mathbf {u}}_{j}) \left| \partial b\left( {\mathbf {u}}_{i},\Vert {\mathbf {u}}_{i}-{\mathbf {u}}_{j}\Vert \right) \cap W\right| } \right| N(W) = n \right\} \right] }.\nonumber \\ \end{aligned}$$
(9)

We bear in mind that for an integrable function \(\varphi ({\mathbf {u}})\) on \({\mathbb {R}}^2\), and n independent points observed in W,

$$\begin{aligned} {\mathbb {E}}\left[ \frac{1}{n-1} \sum _{i=1}^{n-1} \frac{\varphi ({\mathbf {u}}_i)}{f({\mathbf {u}}_i)}\right] = \int _W \varphi ({\mathbf {s}})\mathrm {d}{\mathbf {s}}, \end{aligned}$$

where f is the probability density function of the points. Given that the density function of an inhomogeneous Poisson point process in an individual point is given by

$$\begin{aligned} f({\mathbf {u}}_i)=\frac{\lambda ({\mathbf {u}}_i)}{\Lambda (W)}, \quad \text {for any }{\mathbf {u}}_i \in W, \end{aligned}$$

we have that

$$\begin{aligned} {\mathbb {E}}\left[ \sum _{i=1}^{n-1} \frac{\varphi ({\mathbf {u}}_i)}{\lambda ({\mathbf {u}}_i)}\right] = \frac{n-1}{\Lambda (W)}\int _W \varphi ({\mathbf {s}})\mathrm {d}{\mathbf {s}}. \end{aligned}$$

Applying this expression in Eq. (9), we obtain

$$\begin{aligned} {\mathbb {E}}_{!}\left[ {\hat{g}}_{\epsilon }^{(i)}(r)\right] =&\frac{{\mathbb {E}}_{!}\left[ (N(W)-1)^2\right] }{\Lambda (W)\lambda ({\mathbf {u}}_{i})|W| 2\pi r} \int _{W}\frac{\kappa _{\epsilon }\left( \left\| {\mathbf {u}}_{i}-{\mathbf {v}}\right\| -r\right) 2\pi \Vert {\mathbf {u}}_{i}-{\mathbf {v}}\Vert }{ \left| \partial b\left( {\mathbf {u}}_{i},\Vert {\mathbf {u}}_{i}-{\mathbf {v}}\Vert \right) \cap W\right| } \mathrm {d}{\mathbf {v}} \\ =&\frac{{\mathbb {E}}_{!}\left[ (N(W)-1)^2\right] }{\Lambda (W)\lambda ({\mathbf {u}}_{i})|W| 2\pi r} \int _{r-\epsilon }^{r+\epsilon }\frac{\kappa _{\epsilon }\left( s-r\right) 2\pi s}{\left| \partial b\left( {\mathbf {u}}_{i},s\right) \cap W\right| } {\left| \partial b\left( {\mathbf {u}}_{i},s\right) \cap W\right| }\,\mathrm {d}s \\ =&\frac{\Lambda ^2(W) + \Lambda (W)}{\Lambda (W) \lambda ({\mathbf {u}}_{i}) |W| 2\pi r} \int _{r-\epsilon }^{r+\epsilon }2\pi s\kappa _{\epsilon }\left( s-r\right) \,\mathrm {d}s\\ =&\frac{\Lambda (W) + 1}{\lambda ({\mathbf {u}}_{i})|W|}. \end{aligned}$$

\(\square \)

Appendix B. Variance of Pair Correlation LISA Functions

Theorem 2

Consider an inhomogeneous Poisson point process with intensity \(\lambda ({\mathbf {u}})\), and \(\Lambda (A):= \int _A \lambda ({\mathbf {u}})\mathrm {d}{\mathbf {u}}\) for any \(A\subset W\). The variance with respect to the reduced Palm process (conditional on observing a point \({\mathbf {u}}_i\)) of a pair correlation LISA function \({\hat{g}}_{\epsilon }^{(i)}(r)\) is

$$\begin{aligned} {\mathbb {V}}\text {ar}_{!}\left[ {\hat{g}}_{\epsilon }^{(i)}(r)\right] =\frac{\Lambda (W) + \Lambda ^{-1}(W) +3}{(\lambda ({\mathbf {u}}_i)|W|)^2 2\pi r^2}\int _W \frac{2\pi (\Vert {\mathbf {u}}_{i}-{\mathbf {s}}\Vert )^2 \kappa ^2_{\epsilon }\left( \left\| {\mathbf {u}}_{i}-{\mathbf {s}}\right\| -r\right) }{\lambda ({\mathbf {s}}) \left| \partial b\left( {\mathbf {u}}_{i},\Vert {\mathbf {u}}_{i}-{\mathbf {s}}\Vert \right) \cap W\right| }\mathrm {d}{\mathbf {s}} + \frac{3\Lambda (W) + 3}{(\lambda ({\mathbf {u}}_i)|W|)^2}.\nonumber \\ \end{aligned}$$
(10)

Proof

Given that point counts are Poisson distributed, we have the following moments:

$$\begin{aligned} {\mathbb {E}}_![N(A)-1]= & {} \Lambda (A), \\ {\mathbb {E}}_![(N(A)-1)^2]= & {} \Lambda ^2(A) + \Lambda (A), \\ {\mathbb {E}}_![(N(A)-1)^3]= & {} \Lambda ^3(A) + 3\Lambda ^2(A) + \Lambda (A), \\ {\mathbb {E}}_![(N(A)-1)^4]= & {} \Lambda ^4(A) + 6\Lambda ^3(A) + 7\Lambda ^2(A) + \Lambda (A). \end{aligned}$$

For simplicity, we define

$$\begin{aligned} \phi ({\mathbf {u}}_{i},{\mathbf {u}}_{j},r)=\frac{\kappa _{\epsilon }\left( \left\| {\mathbf {u}}_{i}-{\mathbf {u}}_{j}\right\| -r\right) 2\pi \Vert {\mathbf {u}}_{i}-{\mathbf {u}}_{j}\Vert }{\left| \partial b\left( {\mathbf {u}}_{i},\Vert {\mathbf {u}}_{i}-{\mathbf {u}}_{j}\Vert \right) \cap W\right| }. \end{aligned}$$

The variance with respect to the reduced Palm process is

$$\begin{aligned} {\mathbb {V}}\text {ar}_{!}\left[ {\hat{g}}_{\epsilon }^{(i)}(r)\right] = \frac{1}{(|W|2\pi r)^2}{\mathbb {E}}_{!}\left[ {\mathbb {E}}\left\{ (n-1)^2 \left. \left( \sum _{j\ne i} \frac{ \phi ({\mathbf {u}}_{i},{\mathbf {u}}_{j},r)}{\lambda ({\mathbf {u}}_{i}){\lambda }({\mathbf {u}}_{j})}\right) ^2 \right| N(W) = n \right\} \right] - \left( \frac{\Lambda (W) + 1}{\lambda ({\mathbf {u}}_{i})|W|}\right) ^2.\nonumber \\ \end{aligned}$$
(11)

For solving the first term of Eq. (11), we use the identity

$$\begin{aligned} \left( \sum _{j\ne i}\frac{ \phi ({\mathbf {u}}_{i},{\mathbf {u}}_{j},r)}{\lambda ({\mathbf {u}}_{i}){\lambda }({\mathbf {u}}_{j})}\right) ^2 =\sum _{j\ne i}\frac{\phi ^2({\mathbf {u}}_{i},{\mathbf {u}}_{j},r)}{\lambda ^2 ({\mathbf {u}}_{i})\lambda ^2 ({\mathbf {u}}_{j})} + \sum _{j\ne i}\sum _{\begin{array}{c} k\ne i \\ k \ne j \end{array}}\frac{ \phi ({\mathbf {u}}_{i},{\mathbf {u}}_{j},r)\phi ({\mathbf {u}}_{i},{\mathbf {u}}_{k},r)}{\lambda ^2 ({\mathbf {u}}_{i})\lambda ({\mathbf {u}}_{j})\lambda ({\mathbf {u}}_{k})}. \end{aligned}$$

Again, taking advantage of the properties of the expectation, we note that for any integrable function \(\varphi ({\mathbf {u}})\) on \({\mathbb {R}}^2\), we have

$$\begin{aligned} {\mathbb {E}}\left[ \sum _{i=1}^{n-1} \frac{\varphi ^2({\mathbf {u}}_i)}{\lambda ^2({\mathbf {u}}_i)}\right] = \frac{n-1}{\Lambda (W)}\int _W \frac{\varphi ^2({\mathbf {s}})}{\lambda ({\mathbf {s}})}\mathrm {d}{\mathbf {s}}, \end{aligned}$$

and

$$\begin{aligned} {\mathbb {E}}\left[ \sum _{j=1}^{n-1}\sum _{k \ne j} \frac{\varphi ({\mathbf {u}}_j)}{\lambda ({\mathbf {u}}_j)}\frac{\varphi ({\mathbf {u}}_k)}{\lambda ({\mathbf {u}}_k)}\right] = {\mathbb {E}}\left[ \sum _{j=1}^{n-1}\frac{\varphi ({\mathbf {u}}_j)}{\lambda ({\mathbf {u}}_j)}\sum _{k \ne j} \frac{\varphi ({\mathbf {u}}_k)}{\lambda ({\mathbf {u}}_k)}\right] = \frac{(n-1)(n-2)}{\Lambda ^2(W)}\left( \int _W \varphi ({\mathbf {s}})\mathrm {d}{\mathbf {s}}\right) ^2. \end{aligned}$$

So the first term is

$$\begin{aligned}&\frac{1}{(\lambda ({\mathbf {u}}_i)|W|2\pi r)^2} {\mathbb {E}}_{!}\left[ \frac{(N(W)-1)^3}{\Lambda (W)} \int _W \frac{\phi ^2({\mathbf {u}}_{i},{\mathbf {s}},r)}{\lambda ({\mathbf {s}})}\mathrm {d}{\mathbf {s}} \right. \\&\quad + \left. \frac{(N(W)-1)^3(N(W)-2)}{\Lambda ^2(W)}\left( \int _W \phi ({\mathbf {u}}_{i},{\mathbf {s}},r)\mathrm {d}{\mathbf {s}}\right) ^2\right] . \end{aligned}$$

To solve the last integral above, we proceed as in Theorem 1 and get a value of \((2\pi r)^2\). Therefore, collecting all pieces gives

$$\begin{aligned}&{\mathbb {V}}\text {ar}_{!}\left[ {\hat{g}}_{\epsilon }^{(i)}(r)\right] =\frac{\Lambda ^3(W) + 3\Lambda ^2(W) + \Lambda (W)}{\Lambda (W)(\lambda ({\mathbf {u}}_i)|W|2\pi r)^2} \int _W \frac{\phi ^2({\mathbf {u}}_{i},{\mathbf {s}},r)}{\lambda ({\mathbf {s}})}\mathrm {d}{\mathbf {s}} \\&\quad + \frac{\Lambda ^4(W) + 5\Lambda ^3(W) + 4\Lambda ^2(W)}{\Lambda ^2(W)(\lambda ({\mathbf {u}}_i)|W|2\pi r)^2} (2\pi r)^2 - \frac{\Lambda ^2(W) + 2\Lambda (W) + 1}{(\lambda ({\mathbf {u}}_i)|W|)^2} \end{aligned}$$

and simplifying,

$$\begin{aligned} {\mathbb {V}}\text {ar}_{!}\left[ {\hat{g}}_{\epsilon }^{(i)}(r)\right]= & {} \frac{\Lambda ^2(W) + 3\Lambda (W) +1}{(\lambda ({\mathbf {u}}_i)|W|2\pi r)^2} \int _W \frac{\phi ^2({\mathbf {u}}_{i},{\mathbf {s}},r)}{\lambda ({\mathbf {s}})}\mathrm {d}{\mathbf {s}} + \frac{3\Lambda (W) + 3}{(\lambda ({\mathbf {u}}_i)|W|)^2}\\= & {} \frac{1}{(\lambda ({\mathbf {u}}_i)|W|)^2} \left( \frac{\Lambda ^2(W) + 3\Lambda (W) +1}{(2\pi r)^2}\int _W \frac{\phi ^2({\mathbf {u}}_{i},{\mathbf {s}},r)}{\lambda ({\mathbf {s}})}\mathrm {d}{\mathbf {s}} + 3\Lambda (W) + 3\right) , \end{aligned}$$

which finally gives,

$$\begin{aligned} {\mathbb {V}}\text {ar}_{!}\left[ {\hat{g}}_{\epsilon }^{(i)}(r)\right]= & {} \frac{1}{(\lambda ({\mathbf {u}}_i)|W|)^2} \left. \Big (\frac{\Lambda ^2(W) + 3\Lambda (W) +1}{2\pi r^2}\int _W \frac{2\pi (\Vert {\mathbf {u}}_{i}-{\mathbf {s}}\Vert )^2 \kappa ^2_{\epsilon }\left( \left\| {\mathbf {u}}_{i}-{\mathbf {s}}\right\| -r\right) }{\lambda ({\mathbf {s}}) \left| \partial b\left( {\mathbf {u}}_{i},\Vert {\mathbf {u}}_{i}-{\mathbf {s}}\Vert \right) \cap W\right| }\right. \nonumber \\&\quad \mathrm {d}{\mathbf {s}} + \left. 3\Lambda (W) + 3\Big )\right. \end{aligned}$$
(12)

\(\square \)

Corollary 1

In the homogeneous case,

$$\begin{aligned} {\mathbb {V}}\text {ar}_{!}\left[ {\hat{\rho }}_{\epsilon }^{(i)}(r)\right] =\lambda ^{4}{\mathbb {V}}\text {ar}_{!}\left[ {\hat{g}}_{\epsilon }^{(i)}(r)\right] , \end{aligned}$$

where \({\hat{\rho }}_{\epsilon }^{(i)}(r)\) is the \(i\hbox {th}\) LISA function based on the product density and \(\lambda \) is the constant intensity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González, J.A., Rodríguez-Cortés, F.J., Romano, E. et al. Classification of Events Using Local Pair Correlation Functions for Spatial Point Patterns. JABES 26, 538–559 (2021). https://doi.org/10.1007/s13253-021-00455-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13253-021-00455-1

Keywords

Navigation