Skip to main content
Log in

Synthesis of a polyamine-modified starch flocculant and its application

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

A degradable flocculant was prepared by natural renewable products (starch) and a cationic polymer. A cationic polyamine polymer was prepared by reaction of bis(hexamethylene)triamine with epichlorohydrin. The influence of substrate ratio and molecular weight of cationic polymer on flocculation was investigated and the optimum molecular weight was about 4000. Polyamine-modified starch flocculant was prepared by etherification reaction of cationic polyamine polymer and corn starch. The influence of substitution degree (DS) of starch on flocculation was investigated and the maximum DS was 0.18. The structure of starch-modified flocculant was characterized by XRD and the results confirmed that the plasticized samples contained some crystalline structures that were not destroyed by the etherification reaction process and some newly formed V-type crystalline structures were mainly induced by processing. Flocculation performance was evaluated in simulated kaolin suspension and was compared with that of commercial cationic polyacrylamide (CPAM) and polyaluminium chloride (PAC) flocculants. The flocculation effects of polyamine-modified starch flocculants and commercial flocculants under different dosages and pH values were compared. The results showed that the starch-modified flocculant had the best effect and the cationic starch derivatives flocculation performance increased with increasing DS, and exhibited steady flocculation performance to kaolin suspension in the broad pH range from 4 to 10. The preparation method of starch-modified flocculant is simple in preparation process, low in production cost and pollution-free, and facilitates industrial production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kaavessina M, Fatimah I, Soraya S (2018) Performance test of starch-g-polyacrylamide synthesized through grafting as a flocculant in artificial wastewater treatment. J Chem Eng 2:17–22

    Google Scholar 

  2. Seidi F, Salimi H, Shamsabadi AA (2018) Synthesis of hybrid materials using graft copolymerization on non-cellulosic polysaccharides via homogenous ATRP. Prog Polym Sci 76:1–39

    Article  CAS  Google Scholar 

  3. Depa K, Strachota A, Šlouf M, Brus J (2017) Poly (N-isopropylacrylamide)-SiO2 nanocomposites interpenetrated by starch: stimuli-responsive hydrogels with attractive tensile properties. Eur Polym J 88:349–372

    Article  CAS  Google Scholar 

  4. Peng Y, Li D, Zhang W, Wang N, Yang ZH, Wang D, Teng M (2019) Flocculation-dewatering behavior of waste activated sludge particles under chemical conditioning with inorganic polymer flocculant: effects of typical sludge properties. Chemosphere 218:930–940

    Article  Google Scholar 

  5. Wang H, Hu H, Wang H, Zeng RJ (2019) Combined use of inorganic coagulants and cationic polyacrylamide for enhancing dewaterability of sewage sludge. J Clean Prod 211:387–395

    Article  CAS  Google Scholar 

  6. Salehizadeh H, Yan N, Farnood R (2018) Recent advances in polysaccharide bio-based flocculants. Biotechnol Adv 36:92–119

    Article  CAS  PubMed  Google Scholar 

  7. Daud NM, Abdullah SRS, Hasan HA, Yaakob Z (2015) Production of biodiesel and its wastewater treatment technologies: a review. Process Saf Environ Prot 94:487–508

    Article  CAS  Google Scholar 

  8. Tan W, Li Q, Dong F, Qiu SH, Zhang J, Guo ZH (2017) Novel 1, 2, 3-triazolium-functionalized starch derivatives: synthesis, characterization, and evaluation of antifungal property. Carbohydr Polym 160:163–171

    Article  CAS  PubMed  Google Scholar 

  9. Rahmatinejad J, Khoddami A, Abdolmaleki A, Izadan H (2017) Brønsted acidic ionic liquids: innovative starch desizing agents. Carbohydr Polym 157:468–475

    Article  CAS  PubMed  Google Scholar 

  10. Shak KPY, Wu TY (2017) Synthesis and characterization of a plant-based seed gum via etherification for effective treatment of high-strength agro-industrial wastewater. Chem Eng J 307:928–938

    Article  CAS  Google Scholar 

  11. Shi Y, Ju B, Zhang S (2012) Flocculation behavior of a new recyclable flocculant based on pH responsive tertiary amine starch ether. Carbohydr Polym 88:132–138

    Article  CAS  Google Scholar 

  12. Pal S, Mal D, Singh RP (2005) Cationic starch: an effective flocculating agent. Carbohydr Polym 59:417–423

    Article  CAS  Google Scholar 

  13. Wei H, Ren J, Li A, Yang H (2018) Sludge dewaterability of a starch-based flocculant and its combined usage with ferric chloride. Chem Eng J 349:737–747

    Article  CAS  Google Scholar 

  14. Wu H, Liu Z, Yang H, Li A (2016) Evaluation of chain architectures and charge properties of various starch-based flocculants for flocculation of humic acid from water. Water Res 96:126–135

    Article  CAS  PubMed  Google Scholar 

  15. Khalil MI, Aly AA (2001) Preparation and evaluation of some cationic starch derivatives as flocculants. Starch 53:84–89

    Article  CAS  Google Scholar 

  16. Lin Q, Liang R, Zhong F, Ye A, Singh H (2018) Effect of degree of octenyl succinic anhydride (OSA) substitution on the digestion of emulsions and the bioaccessibility of β-carotene in OSA-modified-starch-stabilized-emulsions. Food Hydrocolloids 84:303–312

    Article  CAS  Google Scholar 

  17. Yang S, Wang L (2018) Structural and functional insights into starches as depressant for hematite flotation. Miner Eng 124:149–157

    Article  CAS  Google Scholar 

  18. Li RH, Zeng T, Wu M, Zhang HB, Hu XQ (2017) Effects of esterification on the structural, physicochemical, and flocculation properties of dextran. Carbohydr Polym 174:1129–1137

    Article  CAS  PubMed  Google Scholar 

  19. Cheong KW, Mirhosseini H, Hamid NS, Osman A, Basri M, Tan CP (2014) Effects of propylene glycol alginate and sucrose esters on the physicochemical properties of modified starch-stabilized beverage emulsions. Molecules 19:8691–8706

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chen Q, Yu H, Wang L, ulAbdin Z, Chen Y, Wang J, Zhou W, Yang X, Khan RU, Zhang H, Chen X (2015) Recent progress in chemical modification of starch and its applications. Rsc Adv 5:67459–67474

    Article  CAS  Google Scholar 

  21. Haq F, Yu H, Wang L, Teng L, Haroon M, Khan RU, Mehmood S, Ullah RS, Khan A, Nazir A (2019) Advances in chemical modifications of starches and their applications. Carbohydr Res 476:12–35

    Article  CAS  PubMed  Google Scholar 

  22. Yu W, Wang Y, Li A, Yang H (2018) Evaluation of the structural morphology of starch-graft-poly (acrylic acid) on its scale-inhibition efficiency. Water Res 141:86–95

    Article  CAS  PubMed  Google Scholar 

  23. Liu Q, Li F, Lu H, Li M, Liu J, Zhang S, Sun Q, Xiong L (2018) Enhanced dispersion stability and heavy metal ion adsorption capability of oxidized starch nanoparticles. Food Chem 242:256–263

    Article  CAS  PubMed  Google Scholar 

  24. El-Naggar ME, Samhan FA, Salama AA, Hamdy RM, Ali GH (2018) Cationic starch: safe and economic harvesting flocculant for microalgal biomass and inhibiting E. coli growth. Int J Biol Macromol 116:1296–1303

    Article  CAS  PubMed  Google Scholar 

  25. Järnström L, Lason L, Rigdahl M (1995) Flocculation in kaolin suspensions induced by modified starches 1. Cationically modified starch: effects of temperature and ionic strength. Colloids Surf A Physicochem Eng 104:191–205

    Article  Google Scholar 

  26. Sharma BR, Dhuldhoya NC, Merchant UC (2006) Flocculants-an ecofriendly approach. J Polym Environ 14:195–202

    Article  CAS  Google Scholar 

  27. Gerde JA, Yao L, Lio J, Wen Z, Wang T (2014) Microalgae flocculation: impact of flocculant type, algae species and cell concentration. Algal Res 3:30–35

    Article  Google Scholar 

  28. Krentz DO, Lohmann C, Schwarz S, Bratskaya S, Liebert T, Laube J, Heinze T, Kulicke WM (2006) Properties and flocculation efficiency of highly cationized starch derivatives. Starch 58:161–169

    Article  CAS  Google Scholar 

  29. Zhao XF, Peng LQ, Wang HL, Wang YB, Zhang H (2018) Environment-friendly urea-oxidized starch adhesive with zero formaldehyde-emission. Carbohydr Polym 181:1112–1118

    Article  CAS  PubMed  Google Scholar 

  30. Hebeish A, Higazy A, El-Shafei A, Sharaf S (2009) Synthesis of carboxymethyl cellulose (CMC) and starch-based hybrids and their applications in flocculation and sizing. Carbohydr Polym 79:60–69

    Article  Google Scholar 

  31. Zhu H, Zhang Y, Yang X, Liu H, Shao L, Zhang X, Yao J (2015) One-step green synthesis of non-hazardous dicarboxyl cellulose flocculant and its flocculation activity evaluation. J Hazard Mater 296:1–8

    Article  CAS  PubMed  Google Scholar 

  32. Khalil MI, Aly AA (2002) Preparation and evaluation of some anionic starch derivatives as flocculants. Starch 54:132–137

    Article  CAS  Google Scholar 

  33. Huang M, Wang Y, Cai J, Bai J, Yang H, Li A (2016) Preparation of dual-function starch-based flocculants for the simultaneous removal of turbidity and inhibition of Escherichia coli in water. Water Res 98:128–137

    Article  CAS  PubMed  Google Scholar 

  34. Spychaj T, Zdanowicz M, Kujawa J, Schmidt B (2013) Carboxymethyl starch with high degree of substitution: synthesis, properties and application. Polimery 58:501–630

    Article  Google Scholar 

  35. Yusoff MS, Aziz HA, Zamri MF, Abdullah AZ, Basri NE (2018) Floc behavior and removal mechanisms of cross-linked Durio zibethinus seed starch as a natural flocculant for landfill leachate coagulation-flocculation treatment. Waste Manag 74:362–372

    Article  CAS  PubMed  Google Scholar 

  36. Zhao S, Tian G, Zhao C, Lu C, Bao Y, Liu X, Zheng J (2018) Emulsifying stability properties of octenyl succinic anhydride (OSA) modified waxy starches with different molecular structures. Food Hydrocolloids 85:248–256

    Article  CAS  Google Scholar 

  37. Du Q, Wang Y, Li A, Yang H (2018) Scale-inhibition and flocculation dual-functionality of poly (acrylic acid) grafted starch. J Environ Manag 210:273–279

    Article  CAS  Google Scholar 

  38. Zhou H, Zhou L, Yang X (2018) Optimization of preparing a high yield and high cationic degree starch graft copolymer as environmentally friendly flocculant: through response surface methodology. Int J Biol Macromol 118:1431–1437

    Article  CAS  PubMed  Google Scholar 

  39. Pal P, Banerjee A, Halder U, Pandey JP, Sen G, Bandopadhyay R (2018) Conferring antibacterial properties on sesbania gum via microwave-assisted graft copolymerization of DADMAC. J Polym Environ 26:3272–3282

    Article  CAS  Google Scholar 

  40. Wang JP, Yuan SJ, Wang Y, Yu HQ (2013) Synthesis, characterization and application of a novel starch-based flocculant with high flocculation and dewatering properties. Water Res 47:2643–2648

    Article  CAS  PubMed  Google Scholar 

  41. Athawale VD, Rathi SC (1999) Graft polymerization: starch as a model substrate. J Macromol Sci Part C 39:445–480

    Article  Google Scholar 

  42. Singh RP, Karmakar GP, Rath SK, Karmakar NC, Pandey SR, Tripathy T, Panda J, Kanan K, Jain SK, Lan NT (2000) Biodegradable drag reducing agents and flocculants based on polysaccharides: materials and applications. Polym Eng Sci 40:46–60

    Article  CAS  Google Scholar 

  43. Wei Y, Cheng F, Zheng H (2008) Synthesis and flocculating properties of cationic starch derivatives. Carbohydr Polym 74:673–679

    Article  CAS  Google Scholar 

  44. Vandamme D, Foubert I, Meesschaert B, Muylaert K (2010) Flocculation of microalgae using cationic starch. J Appl Phycol 22:525–530

    Article  Google Scholar 

  45. Mishra S, Mukul A, Sen G, Jha U (2011) Microwave assisted synthesis of polyacrylamide grafted starch (St-g-PAM) and its applicability as flocculant for water treatment. Int J Biol Macromol 48:106–111

    Article  CAS  PubMed  Google Scholar 

  46. Wu H, Liu Z, Li A, Yang H (2017) Evaluation of starch-based flocculants for the flocculation of dissolved organic matter from textile dyeing secondary wastewater. Chemosphere 174:200–207

    Article  CAS  PubMed  Google Scholar 

  47. Yang Z, Wu H, Yuan B, Huang M, Yang H, Li A, Bai J, Cheng R (2014) Synthesis of amphoteric starch-based grafting flocculants for flocculation of both positively and negatively charged colloidal contaminants from water. Chem Eng J 244:209–217

    Article  CAS  Google Scholar 

  48. Zou J, Zhu H, Wang F, Sui H, Fan J (2011) Preparation of a new inorganic–organic composite flocculant used in solid–liquid separation for waste drilling fluid. Chem Eng J 171:350–356

    Article  CAS  Google Scholar 

  49. Sun Y, Shah KJ, Sun W, Zheng H (2019) Performance evaluation of chitosan-based flocculants with good pH resistance and high heavy metals removal capacity. Sep Purif Technol 215:208–216

    Article  CAS  Google Scholar 

  50. Peng H, Zhong S, Lin Q, Yao X, Liang Z, Yang M, Yin G, Liu Q, He H (2016) Removal of both cationic and anionic contaminants by amphoteric starch. Carbohydr Polym 138:210–214

    Article  CAS  PubMed  Google Scholar 

  51. Lin Q, Peng H, Zhong S, Xiang J (2015) Synthesis, characterization, and secondary sludge dewatering performance of a novel combined silicon–aluminum–iron–starch flocculant. J Hazard Mater 285:199–206

    Article  CAS  PubMed  Google Scholar 

  52. Feng X, Wan J, Deng J, Qin W, Zhao N, Luo X, He M, Chen X (2020) Preparation of acrylamide and carboxymethyl cellulose graft copolymers and the effect of molecular weight on the flocculation properties in simulated dyeing wastewater under different pH conditions. Int J Biol Macromol 155:1142–1156

    Article  CAS  PubMed  Google Scholar 

  53. Matusiak J, Grządka E (2020) Cationic starch as the effective flocculant of silica in the presence of different surfactants. Sep Purif Technol 234:116–132

    Article  Google Scholar 

  54. Patra AS, Patra P, Chowdhury S, Mukherjee AK, Pal S (2020) Cationically functionalized amylopectin as an efficient flocculant for treatment of coal suspension. Colloids Surf A Physicochem Eng 586:124229

    Article  CAS  Google Scholar 

  55. Liu W, Liu G (2016) Polyamine cationic polymer modified starch flocculant and preparation method. CN. Patent 105218688[P]

  56. Su Y, Du H, Huo Y, Xu Y, Wang J, Wang L, Zhao S, Xiong S (2016) Characterization of cationic starch flocculants synthesized by dry process with ball milling activating method. Int J Biol Macromol 87:34–40

    Article  CAS  PubMed  Google Scholar 

  57. Chen L, Tian Y, McClements DJ, Huang M, Zhu B, Wang L, Sun B, Ma R, Cai C, Jin Z (2019) A simple and green method for preparation of non-crystalline granular starch through controlled gelatinization. Food Chem 274:268–273

    Article  CAS  PubMed  Google Scholar 

  58. Qiao D, Zhang B, Huang J, Xie F, Wang DK, Jiang F, Zhao S, Zhu J (2017) Hydration-induced crystalline transformation of starch polymer under ambient conditions. Int J Biol Macromol 103:152–157

    Article  CAS  PubMed  Google Scholar 

  59. Sagnelli D, Hebelstrup KH, Leroy E, Rolland-Sabaté A, Guilois S, Kirkensgaard JJ, Mortensen K, Lourdin D, Blennow A (2016) Plant-crafted starches for bioplastics production. Carbohydr Polym 152:398–408

    Article  CAS  PubMed  Google Scholar 

  60. Mendes JF, Paschoalin RT, Carmona VB, Neto AR, Marques AC, Marconcini JM, Mattoso LH, Medeiros ES, Oliveira JE (2016) Biodegradable polymer blends based on corn starch and thermoplastic chitosan processed by extrusion. Carbohydr Polym 137:452–458

    Article  CAS  PubMed  Google Scholar 

  61. Pan H, Ju D, Zhao Y, Wang Z, Yang H, Zhang H, Dong L (2016) Mechanical properties, hydrophobic properties and thermal stability of the biodegradable poly (butylene adipate-co-terephthalate)/maleated thermoplastic starch blown films. Fiber Polym 17:1540–1549

    Article  CAS  Google Scholar 

  62. Li L, Pan G (2013) A universal method for flocculating harmful algal blooms in marine and fresh waters using modified sand. Environ Sci Technol 47:4555–4562

    Article  CAS  PubMed  Google Scholar 

  63. Guo K, Gao B, Li R, Wang W, Yue Q, Wang Y (2018) Flocculation performance of lignin-based flocculant during reactive blue dye removal: comparison with commercial flocculants. Environ Sci Pollut Res 25:2083–2095

    Article  CAS  Google Scholar 

  64. Teh CY, Wu TY, Juan JC (2014) Potential use of rice starch in coagulation–flocculation process of agro-industrial wastewater: treatment performance and flocs characterization. Ecol Eng 71:509–519

    Article  Google Scholar 

  65. Peng H, Zhong S, Xiang J, Lin Q, Yao C, Dong J, Yin G, Yao K, Zeng S, Zhong J (2017) Characterization and secondary sludge dewatering performance of a novel combined aluminum-ferrous-starch flocculant (CAFS). Chem Eng Sci 173:335–345

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Science and Technology Research key project of the Education Department of Henan Province (No. 21B53003) and Science and Technology Project of Kaifeng (No. 2020-068).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, L., Jinju, M., Hongjian, P. et al. Synthesis of a polyamine-modified starch flocculant and its application. Iran Polym J 30, 675–683 (2021). https://doi.org/10.1007/s13726-021-00921-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-021-00921-0

Keywords

Navigation