Skip to main content
Log in

Calculating the Medium Correction Factor for the PTW-30013 Ionization Chamber

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

In this paper, the medium correction factor for lung, muscle, blood and bone was calculated using analytical method and MCNP simulation for different beam qualities. To validate the calculation method, the medium correction factor of the PTW-30013 ionization chamber for air was specified by measuring the air kerma and the absorbed dose to water calibration coefficients in the standard radiation field of 60Co in Secondary Standards Dosimetry Laboratory (SSDL) of Iran. The value of the medium correction factor for muscle and blood was gotten close to one because of their close density and atomic composition to water. For lung, the medium correction factor was calculated more over 1.08 for different beam qualities. Also, this factor for the bone was determined less than 0.98. The results of this study revealed that for accurate measurement of absorbed dose in low (e.g., lung) or high (e.g., bone) density materials, by ionization chambers calibrated in term of absorbed dose to water, the medium correction factor has to be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aitkenhead AH, Rowbottom CG, Mackay RI (2013) Marvin: an anatomical phantom for dosimetric evaluation of complex radiotherapy of the head and neck. Phys Med Biol 58:6915

    Article  Google Scholar 

  • Almond PR, Biggs PJ, Coursey BM, Hanson W, Huq MS, Nath R, Rogers D (1999) AAPM’s TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams. Med Phys 26:1847–1870

    Article  Google Scholar 

  • Andreo P et al (2000) IAEA TRS-398–absorbed dose determination in external beam radiotherapy: an international code of practice for dosimetry based on standards of absorbed dose to water International Atomic Energy Agency

  • Arib M, Medjadj T, Boudouma Y (2006) Study of the influence of phantom material and size on the calibration of ionization chambers in terms of absorbed dose to water. J Appl Clin Med Phys 7:55–64

    Article  Google Scholar 

  • Attix FH (2008) Introduction to radiological physics and radiation dosimetry. Wiley, New York

    Google Scholar 

  • Beilla S, Younes T, Vieillevigne L, Bardies M, Franceries X, Simon L (2017) Monte Carlo dose calculation in presence of low-density media: Application to lung SBRT treated during DIBH. Phys Med 41:46–52

    Article  Google Scholar 

  • Belousov A, Osipov A (2013) Determining the energy dependence of a calibration coefficient K_ Q, Q_0 for a thimble-ionization chamber using computer modeling. Mosc Univ Phys Bull 68:71–75

    Article  Google Scholar 

  • Briesmeister JF (2000) MCNP4C Monte Carlo N-particle transport code system MCNP-4C Monte Carlo N-particle transport code system

  • Bueno M, Duch MA, Jurado-Bruggeman D, Agramunt-Chaler S, Muñoz-Montplet C (2017) Experimental verification of Acuros XB in the presence of lung-equivalent heterogeneities. Radiat Meas 106:1350–4487

    Article  Google Scholar 

  • Çatlı S, Tanır G (2013) Experimental and Monte Carlo evaluation of Eclipse treatment planning system for effects on dose distribution of the hip prostheses. Med Dosim 38:332–336

    Article  Google Scholar 

  • Fogliata A, Nicolini G, Clivio A, Vanetti E, Cozzi L (2011) Dosimetric evaluation of Acuros XB advanced dose calculation algorithm in heterogeneous media. Radiat Oncol 6:1–15

    Article  Google Scholar 

  • Fogliata A, Nicolini G, Clivio A, Vanetti E, Cozzi L (2012) Critical appraisal of Acuros XB and Anisotropic Analytic Algorithm dose calculation in advanced non-small-cell lung cancer treatments. Int J Radiat Oncol Biol Phys 83:1587–1595

    Article  Google Scholar 

  • Guerra A, Laitano R, Pimpinella M (1995) Experimental determination of the beam quality dependence factors, kQ, for ionization chambers used in photon and electron dosimetry. Phys Med Biol 40:1177

    Article  Google Scholar 

  • Han T, Mikell JK, Salehpour M, Mourtada F (2011) Dosimetric comparison of Acuros XB deterministic radiation transport method with Monte Carlo and model-based convolution methods in heterogeneous media. Med Phys 38:2651–2664

    Article  Google Scholar 

  • Han T, Mourtada F, Kisling K, Mikell J, Followill D, Howell R (2012) Experimental validation of deterministic Acuros XB algorithm for IMRT and VMAT dose calculations with the Radiological Physics Center’s head and neck phantom. Med Phys 39:2193–2202

    Article  Google Scholar 

  • Hoffmann L, Jørgensen MBK, Muren LP, Petersen JBB (2012) Clinical validation of the Acuros XB photon dose calculation algorithm, a grid-based Boltzmann equation solver. Acta Oncol 51:376–385

    Article  Google Scholar 

  • Hubbell J, Seltzer S (2004) Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients (version 14) National Institute of Standards and Technology, Gaithersburg, MD

  • Kan MWK, Yu PKN, Leung LHT (2013) A review on the use of grid-based Boltzmann equation solvers for dose calculation in external photon beam treatment planning. BioMed Res Int

  • Khan RF, Villarreal-Barajas E, Lau H, Liu H-W (2014) Effect of Acuros XB algorithm on monitor units for stereotactic body radiotherapy planning of lung cancer. Med Dosim 39:83–87

    Article  Google Scholar 

  • Kim YL et al (2016) Dose distribution evaluation of various dose calculation algorithms in inhomogeneous media. Int J Radiat Res 14:269–278

    Article  Google Scholar 

  • Kroon PS, Hol S, Essers M (2013) Dosimetric accuracy and clinical quality of Acuros XB and AAA dose calculation algorithm for stereotactic and conventional lung volumetric modulated arc therapy plans. Radiat Oncol 8(149):1748–1717

    Google Scholar 

  • Nakaguchi Y, Ono T, Onitsuka R, Maruyama M, Shimohigashi Y, Kai Y (2016) Comparison of 3-dimensional dose reconstruction system between fluence-based system and dose measurement-guided system. Med Dosim 41:205–211

    Article  Google Scholar 

  • Ojala JJ, Kapanen MK, Hyödynmaa SJ, Wigren TK, Pitkänen MA (2014) Performance of dose calculation algorithms from three generations in lung SBRT: comparison with full Monte Carlo-based dose distributions. J Appl Clin Med Phys 15:4–18

    Article  Google Scholar 

  • Rana S, Rogers K, Pokharel S, Lee T, Reed D, Biggs C (2013) Acuros XB algorithm vs. anisotropic analytical algorithm: a dosimetric study using heterogeneous phantom and computed tomography (CT) data sets of esophageal cancer patients. J Cancer Ther 4:138

    Article  Google Scholar 

  • Reis CQM, Nicolucci P (2016) Assessment of ionization chamber correction factors in photon beams using a time saving strategy with PENELOPE code. Phys Med 32:297–304

    Article  Google Scholar 

  • Reis CQM, Nicolucci P, Fortes SS, Silva LP (2018) Effects of heterogeneities in dose distributions under nonreference conditions: Monte Carlo simulation vs dose calculation algorithms. Med Dosim 44:74–82

    Article  Google Scholar 

  • Senthilkumar S, Ramakrishnan V (2011) Fabrication of low cost in-house slab homogeneous and heterogeneous phantoms for lung radiation treatment. Iran J Radiat Res 9:109–119

    Google Scholar 

  • Sheikh-Bagheri D, Rogers DWO (2002) Monte Carlo calculation of nine megavoltage photon beam spectra using the BEAM code. Med Phys 29:391–402

    Article  Google Scholar 

  • Siebers JV, Keall PJ, Nahum AE, Mohan R (2000) Converting absorbed dose to medium to absorbed dose to water for Monte Carlo based photon beam dose calculations. Phys Med Biol 45:983

    Article  Google Scholar 

  • Suplee C (2009) Stopping-power & range tables for electrons, protons, and helium ions

  • Tikkanen J et al (2020) Calculated beam quality correction factors for ionization chambers in MV photon beams. Phys Med Biol 65:075003

    Article  Google Scholar 

  • Usmani MN et al (2014) Comparison of absorbed dose to medium and absorbed dose to water for spine IMRT plans using a commercial Monte Carlo treatment planning system . Int J Med Phys Clin Eng Radiat Oncol 3:60

    Article  Google Scholar 

  • Vassiliev ON, Wareing TA, McGhee J, Failla G, Salehpour MR, Mourtada F (2010) Validation of a new grid-based Boltzmann equation solver for dose calculation in radiotherapy with photon beams. Phys Med Biol 55:581

    Article  Google Scholar 

  • von Voigts-Rhetz P, Anton M, Vorwerk H, Zink K (2016) Perturbation correction for alanine dosimeters in different phantom materials in high-energy photon beams. Phys Med Biol 61:N70

    Article  Google Scholar 

  • Webster GJ, Hardy MJ, Rowbottom CG, Mackay RI (2008) Design and implementation of a head-and-neck phantom for system audit and verification of intensity-modulated radiation therapy. J Appl Clin Med Phys 9:46–56

    Article  Google Scholar 

  • Yeh PCY, Lee CC, Chao TC, Tung CJ (2017) Monte Carlo evaluation of Acuros XB dose calculation Algorithm for intensity modulated radiation therapy of nasopharyngeal carcinoma. Radiat Phys Chem 140:419–422

    Article  Google Scholar 

  • Zhen H et al (2013) Evaluation of Acuros XB for SAbR Planning of Thoracic Spinal Tumors. Int J Radiat Oncol Biol Phys 87:S733

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Rezaeian.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teimoori Khandan, L., Kashian, S., Rezaeian, P. et al. Calculating the Medium Correction Factor for the PTW-30013 Ionization Chamber. Iran J Sci Technol Trans Sci 45, 1105–1113 (2021). https://doi.org/10.1007/s40995-021-01092-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-021-01092-6

Keywords

Navigation