Skip to main content
Log in

Investigating the Influences of Wet Fiber Laser Cutting Upon the Surface Integrity of Nitinol Cardiovascular Stents

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

High precision laser cutting with minimal post-treatment is needed in the manufacturing of nitinol cardiovascular stents. This paper carries out a series of cutting experiments of nitinol cardiovascular stents by wet fiber laser cutting to understand the basic process characteristics and to investigate the influences of process parameters (laser power, cutting speed, pulse width, frequency) upon the surface integrity (surface topography, dross, surface roughness, HAZ, recast layer, subsurface nanohardness, surface chemical composition). The univariate analysis was used to analyze and explain the influence that rules of process parameters had upon the surface integrity. The experiment results showed that the effects of process parameters on surface integrity were regular, with the optimal single-factor parameters obtained. Moreover, the removal mechanism of the nitinol material was also revealed. This study is of great significance for the medical industry in improve the cutting quality of cardiovascular stents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Kathuria, Y. P. (2005). Laser microprocessing of metallic stent for medical therapy[J]. Journal of Material Processing Technology, 170, 545–550.

    Article  Google Scholar 

  2. Holmes, D. R. (2001). In-stent restenosis[J]. Reviews In Cardiovascular Medicine., 2, 115–119.

    Google Scholar 

  3. Haudrechy, P., Foussereau, J., Mantout, B., et al. (1993). Nickel release from 304 and 316 stainless steels in synthetic sweat. Comparison with nickel and nickel-plated metals. Consequences on allergic contact dermatitis[J]. Corrosion science., 39, 329–336.

    Article  Google Scholar 

  4. Milleret, V., Ziogas, A., Buzzi, S., et al. (2015). Effect of oxide layer modification of CoCr stent alloys on blood activation and endothelial behavior[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterial, 103, 629–640.

    Article  Google Scholar 

  5. Sobocinski, J., Laure, W., Taha, M., et al. (2014). Mussel inspired coating of a biocompatible cyclodextrin based polymer onto CoCr vascular stents[J]. Acs Applied Materials and Interfaces, 6, 3575–3586.

    Article  Google Scholar 

  6. Duerig, T., Pelton, A., & Stöckel, D. (1999). An overview of nitinol medical applications[J]. Materials Science and Engineering A, 273, 149–160.

    Article  Google Scholar 

  7. Guo, Y. B., Klink, A., Fu, C. H., & Snyder, J. (2013). Machinability and surface integrity of Nitinol shape memory alloy[J]. CIRP Annals-Manufacturing Technology, 62, 83–86.

    Article  Google Scholar 

  8. Weinert, K., & Petzoldt, V. (2008). Machining NiTi micro-parts by micro-milling[J]. Materials Science and Engineering A, 481, 672–675.

    Article  Google Scholar 

  9. Huang, H. (2004). A study of High-Speed Milling Characteristics of Nitinol[J]. Materals and Manufacturing Processes, 19, 159–175.

    Article  Google Scholar 

  10. Kong, M. C., Axinte, D., & Voice, W. (2011). Challenges in using waterjet machining of NiTi shape memory alloys: An analysis of controlled-depth milling[J]. J Mater. Process. Tech., 211, 959–971.

    Article  Google Scholar 

  11. Hongyan, L., Xuan, G., Fuke, D., Yanjian, L., & Yian, C. (2013). A preliminary study on local heat treatment of hyperelastic shape memory alloy by using flame gun[J]. International Materials Reviews, 27, 1–5.

    Google Scholar 

  12. Kim, T. W., & Lee, C. M. (2015). Determination of the machining parameters of nickel-based alloys by High-Power diode laser[J]. International Journal Precision Engineering and Manufacturing, 16, 309–314.

    Article  Google Scholar 

  13. Shanjin, L., & Yang, W. (2006). An investigation of pulsed laser cutting of titanium alloy sheet[J]. Optics and Laser Engineering, 44, 1067–1077.

    Article  Google Scholar 

  14. Wang, K. D., Duan, W. Q., Mei, X. S., Wang, W. J., & Zhao, S. X. (2011). Processing microhole by millisecond laser and the post-processing technology of recast layer[J]. Journal of Xi’an Jiaotong University, 45, 45–49.

    Google Scholar 

  15. Fan, W., Gao, F., & Xie, Y. J. (2012). Study on laser cutting technology of stainless steel coronary stent[J]. Materials Review B, 26, 27–31.

    Google Scholar 

  16. Meng, H., Liao, J., Zhou, Y., & Zhang, Q. (2009). Laser micro processing of cardiovascular stent with fiber laser cutting system[J]. Optics and Laser Technology, 41, 300–302.

    Article  Google Scholar 

  17. Fu, C. H., Liu, J. F., & Guo, A. (2015). Statistical characteristics of surface integrity by fiber laser cutting of Nitinol vascular stents[J]. Applied Surface Science, 353, 291–299.

    Article  Google Scholar 

  18. Li, C., Nikumb, S., & Wong, F. (2006). An optimal process of femtosecond laser cutting of NiTi shape memory alloy for fabrication of miniature devices[J]. Optics and Laser Engineering, 44, 1078–1087.

    Article  Google Scholar 

  19. Huang, H., Zheng, H. Y., & Lim, G. G. (2004). Femtosecond laser characteristics of Nitinol[J]. Applied Surface Science, 228, 201–208.

    Article  Google Scholar 

  20. He, W. F., Li, Y. H., Li, W., Li, Y. Q., & Li, Q. P. (2011). Study on improving the fatigue performance of compressor blade by laser shock strengthening[J]. Journal of Aerospace Power, 26, 1551–1556.

    Google Scholar 

  21. Hung, C. H., Chang, F. Y., Chang, T. L., Chang, Y. T., Huang, K. W., & Liang, P. C. (2015). Micromachining NiTi tubes for use in medical devices by using a femtosecond laser[J]. Optics and laser in engineering, 66, 34–40.

    Article  Google Scholar 

  22. Hung, C. H., & Chang, F. Y. (2017). Curve micromachining on the edges of nitinol biliary stent by ultrashort pulses laser[J]. Optics and Laser Technology., 90, 1–6.

    Article  Google Scholar 

  23. Li, C., Johnson, D., & Kovacevic, R. (2003). Modeling of waterjet guided laser grooving of silicon[J]. International Journal of Machine Tools & Manufacture, 43, 925–936.

    Article  Google Scholar 

  24. Mai, T., Richerzhagen, B., Snowdon, P. C., Wood, D., & Maropoulos, P. G. (2007). The laser MicroJet (LMJ): A multi-solution technology for high quality micro-machining[J]. Lasers and applications in science and engineering, 6459, 1–7.

    Google Scholar 

  25. Manley, J., Housh, R., Wagner, F., & Richerzhagen, B. (2004). Water-guided lasers create clean cuts[J]. Laser Focus World, 40, 15–18.

    Google Scholar 

  26. Richerzhagen B, Kutsuna M, Okada H, Ikeda T.(2004). Waterjet-Guided Laser Processing[J]. LAMP 2002: International Congress on Laser Advanced Materials Processing,91–94.

  27. Hock, K., Adelmann, B., & Hellmann, R. (2012). Comparative study of Remote Fiber Laser and Water-Jet Guided Laser Cutting of Thin Metal Sheets[J]. Physics Procedia, 39, 225–231.

    Article  Google Scholar 

  28. Muhammad, N., Whitehead, D., Boor, A., & Li, L. (2010). Comparison of dry and wet fibre laser profile cutting of thin 316L stainless steel tubes for medical device applications[J]. Journal of Materials Processing Technology, 210, 2261–2267.

    Article  Google Scholar 

  29. Muhammad, N., & Li, L. (2012). Underwater femtosecond laser micromachining of thin nitinol tubes for medical coronary stent manufacture[J]. Applied Physics A, 107, 849–861.

    Article  Google Scholar 

  30. Ali, G. D., & Barbara, P. (2016). Dross-free submerged laser cutting of AZ31 Mg alloy for biodegradable stents[J]. Journal of laser Applications, 28, 032001.

    Article  Google Scholar 

  31. Sun, X. Y., Wei, X. T., Li, Z. Y., Zhang, J. Y., & Wang, Y. Q. (2019). Study on process technology and surface integrity of 316Lcardiovascilar stents by fiber laser wet cutting[J]. International Journal of Advanced Manufacturing Technology, 105, 4517–4526.

    Article  Google Scholar 

  32. Ronny, P., Dirk, H., Michael, H., & Stephan, B. (2010). Pulsed Nd:YAG laser cutting of NiTi shape memory alloys-Influence of process parameters[J]. Journal of Materials Processing Technology, 210, 1918–1925.

    Article  Google Scholar 

Download references

Acknowledgements

The present study acknowledged financial supported from National Natural Science Foundation of China (No.51775321) and Key Research and Development Program (public welfare) Project of Shandong Education Department (No. 2017GGX30116).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuting Wei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Wei, X., Li, Z. et al. Investigating the Influences of Wet Fiber Laser Cutting Upon the Surface Integrity of Nitinol Cardiovascular Stents. Int. J. Precis. Eng. Manuf. 22, 1237–1248 (2021). https://doi.org/10.1007/s12541-021-00522-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-021-00522-0

Keywords

Navigation