Skip to main content
Log in

Using an Ensemble to Identify and Classify Macroalgae Antimicrobial Peptides

  • Original research article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

The rapid spread of multi-drug resistant microbes has lead researchers to discover natural alternative remedies such as antimicrobial peptides (AMPs). In the first line of defense, AMPs display a broad spectrum of potent activity against multi-resistant pathogenic bacteria, viruses, fungi, and even cancer. AMPs can be further characterised into families according to amino acid composition, secondary structure, and function. However, despite recent advancements in rapid computational methods for AMP prediction from various mammalian, aquatic, and terrestrial species, there is limited information regarding their presence, functional roles, and family type from marine macroalgae. In this paper, we present a promising two-tier ensemble of heterogeneous machine learning models that integrates seven well-known machine learning classifiers to predict AMPs from macroalgae. The first tier of the ensemble consists of a suite of binary classifiers that identify AMPs from protein sequence data which are then forwarded to a second-tier multi-class ensemble to characterise their functional family type. The two-tier ensemble was successfully used to identify 39 putative AMP sequences in 12 macroalgae species from three different phyla groups. The approach we describe is not limited to AMPs and can also be applied to search sequence data for other types of proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sokolova M, Lapalme G (2009) A systematic analysis of performance measures for classification tasks. Inf Process Manag 45(4):427–437. https://doi.org/10.1016/j.ipm.2009.03.002

    Article  Google Scholar 

  2. Mahlapuu M, Håkansson J, Ringstad L, Björn C (2016) Antimicrobial peptides: an emerging category of therapeutic agents. Front Cell Infect Microbiol 6:194. https://doi.org/10.3389/fcimb.2016.00194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hancock RE, Lehrer R (1998) Cationic peptides: a new source of antibiotics. Trends Biotechnol 16(2):82–88. https://doi.org/10.1016/S0167-7799(97)01156-6

    Article  CAS  PubMed  Google Scholar 

  4. Semreen MH, El-Gamal MI, Abdin S, Alkhazraji H, Kamal L, Hammad S, El-Awady F, Waleed D, Kourbaj L (2018) Recent updates of marine antimicrobial peptides. Saudi Pharm J 26(3):396–409. https://doi.org/10.1016/j.jsps.2018.01.001

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lourenço-Lopes C, Fraga-Corral M, Jimenez-Lopez C, Pereira AG, Garcia-Oliveira P, Carpena M, Prieto MA, Simal-Gandara J (2020) Metabolites from macroalgae and its applications in the cosmetic industry: a circular economy approach. Resources 9(9):101. https://doi.org/10.3390/resources9090101

    Article  Google Scholar 

  6. Admassu H, Gasmalla MAA, Yang R, Zhao W (2018) Bioactive peptides derived from seaweed protein and their health benefits: antihypertensive, antioxidant, and antidiabetic properties. J Food Sci 83(1):6–16. https://doi.org/10.1111/1750-3841.14011

    Article  CAS  PubMed  Google Scholar 

  7. Boonsri N, Rudtanatip T, Withyachumnarnkul B, Wongprasert K (2017) Protein extract from red seaweed Gracilaria fisheri prevents acute hepatopancreatic necrosis disease (AHPND) infection in shrimp. J Appl Phycol 29(3):1597–1608. https://doi.org/10.1007/s10811-016-0969-2

    Article  CAS  Google Scholar 

  8. Cordeiro RA, Gomes VM, Carvalho AFU, Melo VMM (2006) Effect of proteins from the red seaweed Hypnea musciformis (Wulfen) Lamouroux on the growth of human pathogen yeasts. Braz Arch Biol Technol 49(6):915–921. https://doi.org/10.1590/S1516-89132006000700008

    Article  Google Scholar 

  9. Marra NJ, Stanhope MJ, Wang NK, Sun Q, Bitar PP, Richcards VP, Komissarov A, Rayko M, Kilver S, Stanhope BJ (2019) White shark genome reveals ancient elasmobranch adaptations associated with wound healing and the maintenance of genome stability. Proc Natl Acad Sci 116(10):4446–4455. https://doi.org/10.1073/pnas.1819778116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sí Kongsstovu, Dahl HA, Gislason H, Homrum E, Jacobsen JA, Flicek P, Mikalsen SO (2020) Identification of male heterogametic sex-determining regions on the Atlantic herring Clupea harengus genome. J Fish Biol 97(1):190–201. https://doi.org/10.1111/jfb.14349

    Article  CAS  Google Scholar 

  11. Lopez JV, Kamel B, Medina M, Collins T, Baums IB (2019) Multiple facets of marine invertebrate conservation genomics. Annu Rev Anim Biosci 7:473–497. https://doi.org/10.1146/annurev-animal-020518-115034

    Article  PubMed  Google Scholar 

  12. Kenny NJ, Francis WR, Rivera-Vicéns RE, Juravel K, de Mendoza A, Díez-Vives C, Lister R, Bezares-Calderón LA, Grombacher L, Roller M, Barlow LD (2020) Tracing animal genomic evolution with the chromosomal-level assembly of the freshwater sponge Ephydatia Muelleri. Nat Commun 11(1):1–11. https://doi.org/10.1038/s41467-020-17397-w

    Article  CAS  Google Scholar 

  13. Lee EY, Lee MW, Fulan BM, Ferguson AL, Wong GC (2017) What can machine learning do for antimicrobial peptides, and what can antimicrobial peptides do for machine learning? Interface Focus 7(6):20160153. https://doi.org/10.1098/rsfs.2016.0153

    Article  PubMed  PubMed Central  Google Scholar 

  14. Torres MDT, de la Fuente-Nunez C (2019) Toward computer-made artificial antibiotics. Curr Opin Microbiol 51:30–38. https://doi.org/10.1016/j.mib.2019.03.004

    Article  CAS  PubMed  Google Scholar 

  15. Beltran JA, Del Rio G, Brizuela CA (2020) An automatic representation of peptides for effective antimicrobial activity classification. Comput Struct Biotechnol J 18:455–463. https://doi.org/10.1016/j.csbj.2020.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Meher PK, Sahu TK, Saini V, Rao AR (2017) Predicting antimicrobial peptides with improved accuracy by incorporating the compositional, physico-chemical and structural features into Chou’s general PseAAC. Sci Rep 7(1):1–12. https://doi.org/10.1038/srep42362

    Article  CAS  Google Scholar 

  17. Zarayeneh N, Hanifeloo Z (2020) Antimicrobial peptide prediction using ensemble learning algorithm. arXiv:2005.01714

  18. Khamis AM, Essack M, Gao X, Bajic VB (2015) Distinct profiling of antimicrobial peptide families. Bioinformatics 31(6):849–856. https://doi.org/10.1093/bioinformatics/btu738

    Article  CAS  PubMed  Google Scholar 

  19. Yang P, Hwa Yang Y, Zhou BB, Zomaya AY (2010) A review of ensemble methods in bioinformatics. Curr Bioinform 5(4):296–308. https://doi.org/10.2174/157489310794072508

    Article  CAS  Google Scholar 

  20. Cao Y, Geddes TA, Yang JYH (2020) Ensemble deep learning in bioinformatics. Nat Mach Intell 2:500–508. https://doi.org/10.1038/s42256-020-0217-y

    Article  Google Scholar 

  21. Li H (2016) Smile-statistical machine intelligence & learning engine. http://haifengl.github.io/smile. Accessed 06 Aug 18

  22. Min S, Lee B, Yoon S (2017) Deep learning in bioinformatics. Brief Bioinform 18(5):851–869. https://doi.org/10.1093/bib/bbw068

    Article  PubMed  Google Scholar 

  23. Heaton J (2008) Introduction to neural networks with java. Heaton Research, Inc.

  24. Demuth HB, Beale MH, De Jess O, Hagan MT (2014) Neural network design. Martin Hagan

  25. Liaw A, Wiener M et al (2002) Classification and regression by random forest. R News 2(3):18–22

    Google Scholar 

  26. Freund Y, Schapire R, Abe N (1999) A short introduction to boosting. J Jpn Soc Artif Intell 14(771–780):1612

    Google Scholar 

  27. Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat. https://doi.org/10.2307/2699986

    Article  Google Scholar 

  28. Oshiro TM, Perez PS, Baranauskas JA (2012) How many trees in a random forest? In: International workshop on machine learning and data mining in pattern recognition. Springer, pp 154–168. https://doi.org/10.1007/978-3-642-31537-4_13

  29. Suykens JA, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3):293–300. https://doi.org/10.1023/A:1018628609742

    Article  Google Scholar 

  30. Van Messem A (2020) Support vector machines: a robust prediction method with applications in bioinformatics. Princ Methods Data Sci 43:391. https://doi.org/10.1016/bs.host.2019.08.003

    Article  Google Scholar 

  31. Altman NS (1992) An introduction to kernel and nearest-neighbor nonparametric regression. Am Stat 46(3):175–185. https://doi.org/10.1080/00031305.1992.10475879

    Article  Google Scholar 

  32. McCallum A, Nigam K et al (1998) A comparison of event models for naive Bayes text classification. In: AAAI-98 workshop on learning for text categorization, Citeseer, vol 752, pp 41–48

  33. Van Erp M, Vuurpijl L, Schomaker L (2002) An overview and comparison of voting methods for pattern recognition. In: Proceedings eighth international workshop on frontiers in handwriting recognition. IEEE, pp 195–200. https://doi.org/10.1109/IWFHR.2002.1030908

  34. Leon F, Floria S-A, Badica C (2017) Evaluating the effect of voting methods on ensemble-based classification. In: 2017 IEEE international conference on innovations in intelligent systems and applications (INISTA). IEEE, pp 1–6. https://doi.org/10.1109/INISTA.2017.8001122

  35. Matthews BW (1975) Comparison of the predicted and observed secondary structure of t4 phage lysozyme. Biochim Biophys Acta (BBA) Protein Struct 405(2):442–451. https://doi.org/10.1016/0005-2795(75)90109-9

    Article  CAS  Google Scholar 

  36. Waghu FH, Barai RS, Gurung P, Idicula-Thomas S (2016) Campr3: a database on sequences, structures and signatures of antimicrobial peptides. Nucleic Acids Res 44(D1):D1094–D1097. https://doi.org/10.1093/nar/gkv1051

    Article  CAS  PubMed  Google Scholar 

  37. Wang G, Li X, Wang Z (2016) Apd3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res 44(D1):D1087–D1093. https://doi.org/10.1093/nar/gkv1278

    Article  CAS  PubMed  Google Scholar 

  38. U. Consortium (2019) Uniprot: a worldwide hub of protein knowledge. Nucleic Acids Res 47(D1):D506–D515. https://doi.org/10.1093/nar/gky1049

    Article  CAS  Google Scholar 

  39. Veltri D, Kamath U, Shehu A (2018) Deep learning improves antimicrobial peptide recognition. Bioinformatics 34(16):2740–2747. https://doi.org/10.1093/bioinformatics/bty179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lata S, Sharma B, Raghava G (2007) Analysis and prediction of antibacterial peptides. BMC Bioinform 8(1):263. https://doi.org/10.1186/1471-2105-8-263

    Article  CAS  Google Scholar 

  41. Chicco D (2017) Ten quick tips for machine learning in computational biology. BioData Min 10(1):35. https://doi.org/10.1186/s13040-017-0155-3

    Article  PubMed  PubMed Central  Google Scholar 

  42. Chicco D, Jurman G (2020) The advantages of the Matthews correlation coefficient (mcc) over f1 score and accuracy in binary classification evaluation. BMC Genom 21(1):6. https://doi.org/10.1186/s12864-019-6413-7

    Article  Google Scholar 

  43. Boughorbel S, Jarray F, El-Anbari M (2017) Optimal classifier for imbalanced data using Matthews correlation coefficient metric. PLoS One 12(6):e0177678. https://doi.org/10.1371/journal.pone.0177678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gorodkin J (2004) Comparing two k-category assignments by a k-category correlation coefficient. Comput Biol Chem 28(5–6):367–374. https://doi.org/10.1016/j.compbiolchem.2004.09.006

    Article  CAS  PubMed  Google Scholar 

  45. Nakai K, Kidera A, Kanehisa M (1988) Cluster analysis of amino acid indices for prediction of protein structure and function. Protein Eng Des Sel 2(2):93–100. https://doi.org/10.1093/protein/2.2.93

    Article  CAS  Google Scholar 

  46. Kawashima S, Pokarowski P, Pokarowska M, Kolinski A, Katayama T, Kanehisa M (2008) AAindex: amino acid index database, progress report 2008. Nucleic Acids Res 36(Database issue):D202–5. https://doi.org/10.1093/nar/gkm998

    Article  CAS  PubMed  Google Scholar 

  47. Chung CR, Kuo TR, Wu LC, Lee TY, Horng JT (2020) Characterization and identification of antimicrobial peptides with different functional activities. Brief Bioinform 21(3):1098–1114. https://doi.org/10.1093/bib/bbz043

    Article  CAS  Google Scholar 

  48. Jin Y, Hammer J, Pate M, Zhang Y, Zhu F, Zmuda E, Blazyk J (2005) Antimicrobial activities and structures of two linear cationic peptide families with various amphipathic \(\beta \)-sheet and \(\alpha \)-helical potentials. Antimicrob Agents Chemother 49(12):4957–4964. https://doi.org/10.1128/AAC.49.12.4957-4964.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hancock RE (2001) Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect Dis 1(3):156–164. https://doi.org/10.1016/S1473-3099(01)00092-5

    Article  CAS  PubMed  Google Scholar 

  50. Chou K-C (2005) Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. Bioinformatics 21(1):10–19. https://doi.org/10.1093/bioinformatics/bth466

    Article  CAS  PubMed  Google Scholar 

  51. Li B-Q, Zhang Y-C, Huang G-H, Cui W-R, Zhang N, Cai Y-D (2014) Prediction of aptamer-target interacting pairs with pseudo-amino acid composition. PLoS One 9(1):e86729. https://doi.org/10.1371/journal.pone.0086729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang G, Mishra B (2012) The importance of amino acid composition in natural amps: an evolutional, structural, and functional perspective. Front Immunol 3:221. https://doi.org/10.3389/fimmu.2012.00221

    Article  PubMed  PubMed Central  Google Scholar 

  53. Park Y-K, Hahm K-S (2005) Antimicrobial peptides (amps): peptide structure and mode of action. BMB Rep 38(5):507–516. https://doi.org/10.5483/BMBRep.2005.38.5.507

    Article  CAS  Google Scholar 

  54. Luiz DP, Almeida JF, Goulart LR, Nicolau-Junior N, Ueira-Vieira C (2017) Heterologous expression of Abaecin peptide from Apis mellifera in Pichia pastoris. Microb Cell Fact 16(1):1–7. https://doi.org/10.1186/s12934-017-0689-6

    Article  CAS  Google Scholar 

  55. Shen X, Ye G, Cheng X, Yu C, Altosaar I, Hu C (2010) Characterization of an abaecin-like antimicrobial peptide identified from a Pteromalus puparum cdna clone. J Invertebr Pathol 105(1):24–29. https://doi.org/10.1016/j.jip.2010.05.006

    Article  CAS  PubMed  Google Scholar 

  56. Hazlett L, Wu M (2011) Defensins in innate immunity. Cell Tissue Res 343(1):175–188. https://doi.org/10.1007/s00441-010-1022-4

    Article  CAS  PubMed  Google Scholar 

  57. Delves PJ, Roitt IM (1998) Encyclopedia of immunology. Academic Press, San Diego 9780080547879

    Google Scholar 

  58. de Oliveira Dias R, Franco OL (2015) Cysteine-stabilized \(\alpha \beta \)-defensins: from a common fold to antibacterial activity. Peptides 72:64–72. https://doi.org/10.1016/j.peptides.2015.04.017

    Article  CAS  Google Scholar 

  59. Shafee TM, Lay FT, Phan TK, Anderson MA, Hulett MD (2017) Convergent evolution of defensin sequence, structure and function. Cell Mol Life Sci 74(4):663–682. https://doi.org/10.1007/s00018-016-2344-5

    Article  CAS  PubMed  Google Scholar 

  60. Balducci E, Bonucci A, Picchianti M, Pogni R, Talluri E (2011) Structural and functional consequences induced by post-translational modifications in \(\alpha \)-defensins. Int J Pept. https://doi.org/10.13039/100004336

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zhao L, Ericksen B, Wu X, Zhan C, Yuan W, Li X, Pazgier M, Lu W (2012) Invariant gly residue is important for \(\alpha \)-defensin folding, dimerization, and function a case study of the human neutrophil \(\alpha \)-defensin hnp1. J Biol Chem 287(23):18900–18912. https://doi.org/10.1074/jbc.M112.355255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bleakley S, Hayes M (2017) Algal proteins: extraction, application, and challenges concerning production. Foods 6(5):33. https://doi.org/10.3390/foods6050033

    Article  CAS  PubMed Central  Google Scholar 

  63. Lin H, Qin S (2014) Tipping points in seaweed genetic engineering: scaling up opportunities in the next decade. Mar Drugs 12(5):3025–3045. https://doi.org/10.3390/md12053025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Righetti PG, Boschetti E (2016) Global proteome analysis in plants by means of peptide libraries and applications. J Proteomics 143:3–14. https://doi.org/10.1016/j.jprot.2016.02.033

    Article  CAS  PubMed  Google Scholar 

  65. Kumagai Y, Miyabe Y, Takeda T, Adachi K, Yasui H, Kishimura H (2019) In silico analysis of relationship between proteins from plastid genome of red alga Palmaria sp. (japan) and angiotensin i converting enzyme inhibitory peptides. Mar Drugs 17(3):190. https://doi.org/10.3390/md17030190

    Article  CAS  PubMed Central  Google Scholar 

  66. de Carvalho L, Borelli G, Camargo A, de Assis M, de Ferraz S, Fiamenghi M, Jose J, Mofatto L, Nagamatsu S, Persinoti G et al (2019) Bioinformatics applied to biotechnology: a review towards bioenergy research. Biomass Bioenergy 123:195–224. https://doi.org/10.1016/j.biombioe.2019.02.016

    Article  CAS  Google Scholar 

  67. Gupta V, Jain M, Reddy C (2017) Macroalgal functional genomics: a missing area. In: Systems biology of marine ecosystems. Springer, pp 3–12. https://doi.org/10.1007/978-3-319-62094-7_1

  68. Pliego-Cortès H, Wijesekara I, Lang M, Bourgougnon N, Bedoux G (2020) Current knowledge and challenges in extraction, characterization and bioactivity of seaweed protein and seaweed-derived proteins. In: Advances in botanical research, vol 95. Elsevier, pp 289–326. https://doi.org/10.1016/bs.abr.2019.11.008

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michela Chiara Caprani.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caprani, M.C., Healy, J., Slattery, O. et al. Using an Ensemble to Identify and Classify Macroalgae Antimicrobial Peptides. Interdiscip Sci Comput Life Sci 13, 321–333 (2021). https://doi.org/10.1007/s12539-021-00435-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-021-00435-6

Keywords

Navigation