Skip to main content
Log in

Direct Determination of the Power Threshold Value of Vortex Avalanche in YBa2Cu3O7-x Thin Films Triggered by a Laser Pulse

  • Research paper
  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Background

Vortex stability is critically important for applications of type-II superconductors. If some vortices are detached from their pinning sites by external perturbations, the concomitant Joule heat will facilitate further motion of other vortices. This is a positive feedback process, which leads to a flux avalanche in the superconductor. So far, the existing research has not addressed the problem of the power threshold value (PVT) for activating a flux avalanche.

Objective

The primary objective is to study the influences of temperatures, applied magnetic fields and laser activating sites on the PTV of YBa2Cu3O7-x (YBCO) thin films, and to find the relationship between avalanche velocities and laser activating sites.

Methods

We constructed two systems including the classical and high speed magneto-optical imaging (MOI) system. Both systems include two optical branches: one serves as an illuminating system, and the other is used to trigger the dendritic flux avalanche in superconducting film. The PTV was obtained by the classical MOI system while avalanche velocities were acquired via the high speed MOI system.

Results

The PTVs were experimentally obtained at different given temperatures, applied magnetic fields and activating sites, as well as the dependence of avalanche velocity on activating sites. Theoretically, two models are provided to depict the dependence of PTV on temperature and avalanche velocity on activating sites, respectively. The calculated results according to the present models are in reasonable agreement with the experiments.

Conclusions

The experimental results and constructed theoretical models help us to understand the characteristics of flux avalanche in YBCO films and are of significance to evaluate the flux stability for practical applications of high temperature superconducting films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abrikosov AA (1988) Fundamentals of the Theory of Metals. Elsevier, Amsterdam

    Google Scholar 

  2. Mints RG, Rakhmanov AL (1981) Critical state stability in type-II superconductors and superconducting-normal-metal composites. Rev Mod Phys 53:551–592

    Article  Google Scholar 

  3. Altshuler E, Johansen TH (2004) Colloquium: Experiments in vortex avalanches. Rev Mod Phys 76:471–487

    Article  Google Scholar 

  4. Denisov DV, Shantsev DV, Galperin YM, Eun-Mi C, Hyun-Sook L, Sung-Ik L, Bobyl AV, Goa PE, Olsen AAF, Johansen TH (2006) Onset of dendritic flux avalanches in superconducting films. Phys Rev Lett 97:077002

    Article  Google Scholar 

  5. Wertheimer M, le G Gilchrist J, (1967) Flux jumps in type II superconductors. J Phys Chem Solids 28:2509–2514

    Article  Google Scholar 

  6. Duran CA, Gammel PL, Miller RE, Bishop DJ (1995) Observation of magnetic-field penetration via dendritic grown in superconducting niobium films. Phys Rev B 52:75–78

    Article  Google Scholar 

  7. Leiderer P, Boneberg J, Brull P, Bujok VV, Herminghaus S (1993) Nucleation and growth of a flux instability in superconducting YBa2Cu3O7-x films. Phys Rev Lett 71:2646–2649

    Article  Google Scholar 

  8. Baziljevich M, Baruch-El E, Johansen TH, Yeshurun Y (2014) Dendritic instability in YBa2Cu3O7-delta films triggered by transient magnetic fields. Appl Phys Lett 105:012602

    Article  Google Scholar 

  9. Johansen TH, Baziljevich M, Shantsev DV, Goa PE, Galperin YM, Kang WN, Kim HJ, Choi EM, Kim MS, Lee SI (2001) Dendritic flux patterns in MgB2 films. Supercond Sc Technol 14:726–728

    Article  Google Scholar 

  10. Rudnev IA, Antonenko SV, Shantsev DV, Johansen TH, Primenko AE (2003) Dendritic flux avalanches in superconducting Nb3Sn films. Cryogenics 43:663–666

    Article  Google Scholar 

  11. Wimbush SC, Holzapfel B, Jooss C (2004) Observation of dendritic flux instabilities in YNi2B2C thin films. J Appl Phys 96:3589–3591

    Article  Google Scholar 

  12. Menghini M, Wijngaarden RJ, Silhanek AV, Raedts S, Moshchalkov VV (2005) Dendritic flux penetration in Pb films with a periodic array of antidots. Phys Rev B 71:104506

    Article  Google Scholar 

  13. Rudnev IA, Shantsev DV, Johansen TH, Primenko AE (2005) Avalanche-driven fractal flux distributions in NbN superconducting films. Appl Phys Lett 87:042502

    Article  Google Scholar 

  14. Motta M, Colauto F, Ortiz WA, Fritzsche J, Cuppens J, Gillijns W, Moshchalkov VV, Johansen TH, Sanchez A, Silhanek AV (2013) Enhanced pinning in superconducting thin films with graded pinning landscapes. Appl Phys Lett 102:212601

    Article  Google Scholar 

  15. Colauto F, Motta M, Palau A, Blamire M G, Johansen T H and Ortiz W A (2015) First Observation of Flux Avalanches in a-MoSi Superconducting Thin Films. IEEE Trans App Supercond 25:7500704

  16. Pinheiro LBLG, Motta M, Colauto F, Johansen TH, Bellingeri E, Bernini C, Ferdeghini C and Ortiz WA (2019) Imaging flux avalanches in V3Si superconducting thin films IEEE Trans App Supercond 29:7500404

  17. Jooss C, Albrecht J, Kuhn H, Leonhardt S, Kronmuller H (2002) Magneto-optical studies of current distributions in high-T-c superconductors. Rep Prog Phys 65:651–788

    Article  Google Scholar 

  18. Barkov FL, Shantsev DV, Johansen TH, Goa PE, Kang WN, Kim HJ, Choi EM, Lee SI (2003) Local threshold field for dendritic instability in superconducting MgB2 films. Phys Rev B 67:064513

    Article  Google Scholar 

  19. Lara A, Aliev FG, Silhanek AV, Moshchalkov VV (2015) Microwave-stimulated superconductivity due to presence of vortices. Sci Rep 5:9187

    Article  Google Scholar 

  20. Lara A, Aliev FG, Moshchalkov VV, Galperin YM (2017) Thermally Driven Inhibition of Superconducting Vortex Avalanches. Phys Rev App 8:034027

    Article  Google Scholar 

  21. Bobyl AV, Shantsev DV, Johansen TH, Kang WN, Kim HJ, Choi EM, Lee SI (2002) Current-induced dendritic magnetic instability in superconducting MgB2 films. Appl Phys Lett 80:4588–4590

    Article  Google Scholar 

  22. Motta M, Colauto F, Zadorosny R, Johansen TH, Dinner RB, Blamire MG, Ataklti GW, Moshchalkov VV, Silhanek AV, Ortiz WA (2011) Visualizing the ac magnetic susceptibility of superconducting films via magneto-optical imaging. Phys Rev B 84:214529

    Article  Google Scholar 

  23. Carmo D, Colauto F, de Andrade AMH, Oliveira AAM, Ortiz WA, Johansen TH (2016) Controllable injector for local flux entry into superconducting films. Sci Tech 29:095003

    Google Scholar 

  24. Baruch-El E, Baziljevich M, Shapiro BY, Johansen TH, Shaulov A, Yeshurun Y (2016) Dendritic flux instabilities in YBa2Cu3O7-x films: Effects of temperature and magnetic field ramp rate. Phys Rev B 94:054509

    Article  Google Scholar 

  25. Baruch-El E, Baziljevich M, Johansen TH, Zhou XY, Jia XQ, Jin BB, Shaulov A, Yeshurun Y (2018) Magnetic flux instability in NbN films exposed to fast field sweep rates. Supercon Sci Technol 31:105008

    Article  Google Scholar 

  26. Bolz U, Biehler B, Schmidt D, Runge BU, Leiderer P (2003) Dynamics of the dendritic flux instability in YBa2Cu3O7-delta films. Europhys Lett 64:517–523

    Article  Google Scholar 

  27. Biehler B, Runge BU, Leiderer P, Mints RG (2005) Ultrafast magnetic flux dendrite propagation into thin superconducting films. Phys Rev B 72:024532

    Article  Google Scholar 

  28. Vestgården JI, Shantsev DV, Galperin YM, Johansen TH (2012) Lightning in superconductors Sci Rep 2:886

    Google Scholar 

  29. Jing Z, Yong H, Zhou Y (2016) Influences of non-uniformities and anisotropies on the flux avalanche behaviors of type-II superconducting films. Supercon Sci Technol 29:105001

    Article  Google Scholar 

  30. Jiang L, Xue C, Burger L, Vanderheyden B, Silhanek AV, Zhou YH (2020) Selective triggering of magnetic flux avalanches by an edge indentation. Phys Rev B 101:224505

    Article  Google Scholar 

  31. Aranson IS, Gurevich A, Welling MS, Wijngaarden RJ, Vlasko-Vlasov VK, Vinokur VM, Welp U (2005) Dendritic flux avalanches and nonlocal electrodynamics in thin superconducting films. Phys Rev Lett 94:037002

    Article  Google Scholar 

  32. Denisov DV, Rakhmanov AL, Shantsev DV, Galperin YM, Johansen TH (2006) Dendritic and uniform flux jumps in superconducting films. Phys Rev B 73:014512

    Article  Google Scholar 

  33. Vestgården JI, Shantsev DV, Galperin YM, Johansen TH (2011) Dynamics and morphology of dendritic flux avalanches in superconducting films. Phys Rev B 84:054537

    Article  Google Scholar 

  34. Vestgården JI, Galperin YM, Johansen TH (2016) Oscillatory regimes of the thermomagnetic instability in superconducting films. Phys Rev B 93:174511

    Article  Google Scholar 

  35. Vestgården JI, Johansen TH and Galperin YM (2018) Nucleation and propagation of thermomagnetic avalanches in thin-film superconductors. Low Temp Phys+ 44:460–476

  36. Qureishy T, Vestgården JI, Qviller AJ, Fjellvåg AS, Meckbach JM, Torgovkin A, Johansen TH, Ilin K, Siegel M, Maasilta I, Mikheenko P (2018) Energy of dendritic avalanches in thin-film superconductors. AIP Adv 8:085128

    Article  Google Scholar 

  37. van der Pauw LJ (1958) A method of measuring specific 9593 resistivity and Hall effect of discs of arbitrary shape. Phil Res Rep 13:1–9

    Google Scholar 

  38. Alkelly AA (2007) Spot size and radial intensity distribution of focused Gaussian beams in spherical and non-spherical aberration lenses. Opt Commun 277:397–405

    Article  Google Scholar 

  39. Smith DY, Inokutil M, Karstens W (2001) A generalized Cauchy dispersion formula and the refractivity of elemental semiconductors. J Phys-Condens Mat 13:3883–3893

    Article  Google Scholar 

  40. Zhou Y, Wang C, Liu C, Yong H, Zhang X (2020) Optically Triggered Chaotic Vortex Avalanches in Superconducting YBa2Cu3O7-x Films. Phys Rev Applied 13:024036

    Article  Google Scholar 

  41. Brandt EH, Indenbom M (1993) Type-II superconductor strip with current in a perpendicular magnetic-field. Phys Rev B 48:12893–12906

    Article  Google Scholar 

  42. Zeldov E, Clem JR, McElfresh M, Darwin M (1994) Magnetization and transport currents in thin superconducting films. Phys Rev B 49:9802–9822

    Article  Google Scholar 

  43. Brandt E, Indenbom M, Forkl A (1993) Type-II superconducting strip in perpendicular magnetic-field. Europhys Lett 22:735–740

    Article  Google Scholar 

  44. Aranson I, Gurevich A, Vinokur V (2001) Vortex avalanches and magnetic flux fragmentation in superconductors. Phys Rev Lett 87:067003

    Article  Google Scholar 

  45. Swartz ET, Pohl RO (1989) Thermal-boundary resistance Rev Mod Phys 61:605–668

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Fund of Natural Science Foundation of China (No. 11872196, 11902130).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cong Liu or Xingyi Zhang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Liu, C., Zhang, X. et al. Direct Determination of the Power Threshold Value of Vortex Avalanche in YBa2Cu3O7-x Thin Films Triggered by a Laser Pulse. Exp Mech 61, 1227–1235 (2021). https://doi.org/10.1007/s11340-021-00727-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-021-00727-4

Keyword

Navigation