Skip to main content
Log in

Ecological predictors of lateral line asymmetry in stickleback (Gasterosteus aculeatus)

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Threespine stickleback exhibit a row of superficial neuromasts that project through the bony plates on each side of the trunk and which constitute an important sensory modality for detection of near-field water motion. Previously, we have shown that numbers of neuromasts on each structural plate are highly variable among populations. In the current paper, we expand this study to evaluate the extent of deviation from bilateral symmetry of 4344 fish in 57 natural and three transplant populations of threespine stickleback from lakes, streams and oceanic habitats of coastal British Columbia, predicting that neuromasts would be largely bilaterally symmetrical for optimal detection of external stimuli. In contrast, we found asymmetry in all populations, the greatest amount occurring on the anterior buttressing lateral plates and on populations with the fewest neuromasts. We found no consistent trends of signed (directional) asymmetry (SA) among the populations while relative absolute asymmetry (RAA) is lower in dystrophic (stained) habitats than in clearwater habitats (p < 0.001), except for fish with few neuromasts. Sexual dimorphism in RAA is also greater in dystrophic habitats (p < 0.001). Transplants from stained lakes to unstained ponds resulted in a 0.1% to 14% difference in RAA from the source population in less than 12 generations but varied in direction among experiments. Our data suggest a widespread tendency for populations exposed to reduced photic information to exhibit reduced asymmetry in their lateral line system, which can change rapidly in response to a new environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  • Ahnelt H, Ramler D, Madsen MØ et al (2021) Diversity and sexual dimorphism in the head lateral line system in North Sea populations of threespine sticklebacks, Gasterosteus aculeatus (Teleostei: Gasterosteidae). Zoomorphology 140:103–117

    Article  Google Scholar 

  • Almeida D, Almodóvar A, Nicola GG, Elvira B (2008) Fluctuating asymmetry, abnormalities and parasitism as indicators of environmental stress in cultured stocks of goldfish and carp. Aquaculture 279:120–125

    Article  Google Scholar 

  • Anfora G, Rigosi E, Frasnelli E et al (2011) Lateralization in the invertebrate brain: left-right asymmetry of olfaction in bumble bee Bombus Terrestris. PLoS ONE 6:e18903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker CF, Montgomery JC (1999) The sensory basis of rheotaxis in the blind Mexican cave fish, Astyanax fasciatus. J Comp Physiol A 184:519–527

    Article  Google Scholar 

  • Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  • Beasley DAE, Bonisoli-Alquati A, Mousseau TA (2013) The use of fluctuating asymmetry as a measure of environmentally induced developmental instability: a meta-analysis. Ecol Ind 30:218–226

    Article  Google Scholar 

  • Bergstrom CA, Reimchen TE (2000) Functional implications of fluctuating asymmetry among endemic populations of Gasterosteus aculeatus. Behaviour 137:1097–1112

    Article  Google Scholar 

  • Bergstrom CA, Reimchen TE (2005) Habitat dependent associations between parasitism and fluctuating asymmetry among endemic stickleback populations. J Evol Biol 18:939–948

    Article  CAS  PubMed  Google Scholar 

  • Bleckmann H, Tittel G, Blübaum-Gronau E (1989) The lateral line system of surface-feeding fish: anatomy, physiology, and behavior. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line. Springer, New York, NY, pp 501–526

    Chapter  Google Scholar 

  • Brown EEA, Simmons AM (2016) Variability of rheotaxis behaviors in larval bullfrogs highlights species diversity in lateral line function. PLoS ONE 11:e0166989

    Article  PubMed  PubMed Central  Google Scholar 

  • Burt de Perera T, Braithwaite VA (2005) Laterality in a non-visual sensory modality—the lateral line of fish. Curr Biol 15:R241–R242

    Article  CAS  Google Scholar 

  • Butler JM, Maruska KP (2016) Mechanosensory signaling as a potential mode of communication during social interactions in fishes. J Exp Biol 219:2781–2789

    Article  PubMed  Google Scholar 

  • Cantalupo C, Bisazza A, Vallortigara G (1995) Lateralization of predator-evasion response in a teleost fish (Girardinus falcatus). Neuropsychologia 33:1637–1646

    Article  CAS  PubMed  Google Scholar 

  • Cnaan A, Laird NM, Slasor P (1997) Using the general linear mixed model to analyse unbalanced repeated measures and longitudinal data. Stat Med 16:2349–2380

    Article  CAS  PubMed  Google Scholar 

  • Coombs S, Patton P (2009) Lateral line stimulation patterns and prey orienting behavior in the Lake Michigan mottled sculpin (Cottus bairdi). J Comp Physiol A 195:279

    Article  Google Scholar 

  • Coombs S, Bleckmann H, Fay RR, Popper AN (eds) (2014) The lateral line system. Springer-Verlag, New York

    Google Scholar 

  • Deagle BE, Jones FC, Chan YF et al (2012) Population genomics of parallel phenotypic evolution in stickleback across stream–lake ecological transitions. Proc R Soc B-Biol Sci 279:1277–1286

    Article  CAS  Google Scholar 

  • Engqvist L (2005) The mistreatment of covariate interaction terms in linear model analyses of behavioural and evolutionary ecology studies. Anim Behav 70:967–971

    Article  Google Scholar 

  • Faucher K, Fichet D, Miramand P, Lagardère JP (2006) Impact of acute cadmium exposure on the trunk lateral line neuromasts and consequences on the “C-start” response behaviour of the sea bass (Dicentrarchus labrax L.; Teleostei, Moronidae). Aquat Toxicol 76:278–294

    Article  CAS  PubMed  Google Scholar 

  • Fernandes VFL, Macaspac C, Lu L, Yoshizawa M (2018) Evolution of the developmental plasticity and a coupling between left mechanosensory neuromasts and an adaptive foraging behavior. Dev Biol 441:262–271

    Article  CAS  PubMed  Google Scholar 

  • Fischer EK, Soares D, Archer KR et al (2013) Genetically and environmentally mediated divergence in lateral line morphology in the Trinidadian guppy (Poecilia reticulata). J Exp Biol 216:3132–3142

    PubMed  Google Scholar 

  • Frasnelli E, Vallortigara G, Rogers LJ (2012) Left–right asymmetries of behaviour and nervous system in invertebrates. Neurosci Biobehav R 36:1273–1291

    Article  Google Scholar 

  • Greenwood AK, Wark AR, Yoshida K, Peichel CL (2013) Genetic and neural modularity underlie the evolution of schooling behavior in threespine sticklebacks. Curr Biol 23:1884–1888

    Article  CAS  PubMed  Google Scholar 

  • Gross JB, Gangidine A, Powers AK (2016) Asymmetric facial bone fragmentation mirrors asymmetric distribution of cranial neuromasts in blind Mexican cavefish. Symmetry-Basel 8:118

    Article  PubMed  PubMed Central  Google Scholar 

  • Harrison XA, Donaldson L, Correa-Cano ME et al (2018) A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6:e4794

    Article  PubMed  PubMed Central  Google Scholar 

  • Hart NS, Partridge JC, Cuthill IC (2000) Retinal asymmetry in birds. Curr Biol 10:115–117

    Article  CAS  PubMed  Google Scholar 

  • Holzman R, Perkol-Finkel S, Zilman G (2014) Mexican blind cavefish use mouth suction to detect obstacles. J Exp Biol 217:1955–1962

    PubMed  Google Scholar 

  • Houle D (1997) A meta-analysis of the heritability of developmental stability - Comment. J Evol Biol 10:17–20

    Article  Google Scholar 

  • Jiang Y, Peichel CL, Torrance L et al (2017) Sensory trait variation contributes to biased dispersal of threespine stickleback in flowing water. J Evol Biol 30:681–695

    Article  CAS  PubMed  Google Scholar 

  • Junges CM, Lajmanovich RC, Peltzer PM et al (2010) Predator-prey interactions between Synbranchus marmoratus (Teleostei: Synbranchidae) and Hypsiboas pulchellus tadpoles (Amphibia: Hylidae): Importance of lateral line in nocturnal predation and effects of fenitrothion exposure. Chemosphere 81:1233–1238

    Article  CAS  PubMed  Google Scholar 

  • Kelley JL, Grierson PF, Davies PM, Collin SP (2017) Water flows shape lateral line morphology in an arid zone freshwater fish. Evol Ecol Res 18:411–428

    Google Scholar 

  • Krings M, Mueller-Limberger E, Wagner H (2019) EvoDevo in owl ear asymmetry-The little owl (Athene noctua). Zoology 132:1–5

    Article  PubMed  Google Scholar 

  • Lajus DL, Golovin PV, Yurtseva AO et al (2019) Fluctuating asymmetry as an indicator of stress and fitness in stickleback: a review of the literature and examination of cranial structures. Evol Ecol Res 20:83–106

    Google Scholar 

  • Leaver S (2010) Morphological and behavioural responses of threespine stickleback (Gasterosteus aculeatus) to abrupt alterations in their selective landscape. University of Victoria

  • Leaver SD, Reimchen TE (2012) Abrupt changes in defence and trophic morphology of the giant threespine stickleback (Gasterosteus sp.) following colonization of a vacant habitat. Biol J Lin Soc 107:494–509

    Article  Google Scholar 

  • Lens L, Dongen SV, Kark S, Matthysen E (2002) Fluctuating asymmetry as an indicator of fitness: can we bridge the gap between studies? Biol Rev 77:27–38

    Article  PubMed  Google Scholar 

  • Lenth R (2019) emmeans: estimated marginal means, aka least-squares means

  • Leung B, Forbes MR, Houle D (2000) Fluctuating asymmetry as a bioindicator of stress: comparing efficacy of analyses involving multiple traits. Am Nat 155:101–115

    Article  PubMed  Google Scholar 

  • Liao JC (2006) The role of the lateral line and vision on body kinematics and hydrodynamic preference of rainbow trout in turbulent flow. J Exp Biol 209:4077–4090

    Article  PubMed  Google Scholar 

  • Lin L-Y, Hung G-Y, Yeh Y-H et al (2019) Acidified water impairs the lateral line system of zebrafish embryos. Aqua Toxicol 105351

  • Lippolis G, Joss JMP, Rogers LJ (2009) Australian Lungfish (Neoceratodus forsteri): a missing link in the evolution of complementary side biases for predator avoidance and prey capture. Brain Behav Evolut 73:295–303

    Article  CAS  Google Scholar 

  • Lychakov DV, Rebane YT, Lombarte A et al (2006) Fish otolith asymmetry: morphometry and modeling. Hearing Res 219:1–11

    Article  CAS  Google Scholar 

  • Lychakov DV, Rebane YT, Lombarte A et al (2008) Saccular otolith mass asymmetry in adult flatfishes. J Fish Biol 72:2579–2594

    Article  Google Scholar 

  • Markow TA, Clarke GM (1997) Meta-analysis of the heritability of developmental stability: a giant step backward. J Evol Biol 10:31–37

    Article  Google Scholar 

  • Marques DA, Jones FC, Di Palma F et al (2018) Experimental evidence for rapid genomic adaptation to a new niche in an adaptive radiation. Nat Ecol Evol 2:1128-+

  • Mekdara PJ, Schwalbe MAB, Coughlin LL, Tytell ED (2018) The effects of lateral line ablation and regeneration in schooling giant danios. J Exp Bio 221:jeb175166

  • Mesa MG, Warren JJ (1997) Predator avoidance ability of juvenile chinook salmon (Oncorhynchus tshawytscha) subjected to sublethal exposures of gas-supersaturated water. Can J Fish Aquat Sci 54:757–764

    Google Scholar 

  • Middlemiss KL, Cook DG, Jerrett AR, Davison W (2017) Morphology and hydro-sensory role of superficial neuromasts in schooling behaviour of yellow-eyed mullet (Aldrichetta forsteri). J Comp Physiol A 203:807–817

    Article  Google Scholar 

  • Mills MG, Greenwood AK, Peichel CL (2014) Pleiotropic effects of a single gene on skeletal development and sensory system patterning in sticklebacks. EvoDevo 5:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Mogdans J (2019) Sensory ecology of the fish lateral-line system: Morphological and physiological adaptations for the perception of hydrodynamic stimuli. J Fish Biol 95:53–72

    PubMed  Google Scholar 

  • Moller AP (1997) Developmental stability and fitness: a review. Am Nat 149:916–932

    Article  CAS  PubMed  Google Scholar 

  • Møller AP, Thornhill R (1997) A meta-analysis of the heritability of developmental stability. J Evol Biol 10:1–16

    Article  Google Scholar 

  • Montgomery JC (1989) Lateral line detection of planktonic prey. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Springer, New York, NY, pp 561–574

    Chapter  Google Scholar 

  • Montgomery JC, Baker CF, Carton AG (1997) The lateral line can mediate rheotaxis in fish. Nature 389:960–963

    Article  CAS  Google Scholar 

  • Moodie GEE (1972) Predation, natural selection and adaptation in an unusual threespine stickleback. Heredity 28:155–167

    Article  Google Scholar 

  • Moodie GEE, Moodie PF (1996) Do asymmetric sticklebacks make better fathers? Proc R Soc B-Biol Sci 263:535–539

    Article  Google Scholar 

  • Moodie GEE, Reimchen TE (1976) Phenetic variation and habitat differences in Gasterosteus populations of the Queen Charlotte Islands. Syst Biol 25:49–61

    Google Scholar 

  • Murtaugh PA (2009) Performance of several variable-selection methods applied to real ecological data. Ecol Lett 12:1061–1068

    Article  PubMed  Google Scholar 

  • Niemeier S, Müller J, Rödel M-O (2019) Fluctuating asymmetry-appearances are deceptive. Comparison of methods for assessing developmental instability in European Common Frogs (Rana temporaria). Salamandra 55:14–26

    Google Scholar 

  • Oravec TJ, Reimchen TE (2013) Divergent reproductive life histories in Haida Gwaii stickleback (Gasterosteus spp.). Can J Zool 91:17–24

    Article  Google Scholar 

  • Palmer AR, Strobeck C (1986) Fluctuating asymmetry: measurement, analysis, patterns. Annu Rev Ecol Syst 17:391–421

    Article  Google Scholar 

  • Planidin NP, Reimchen TE (2019) Spatial, sexual, and rapid temporal differentiation in neuromast expression on lateral plates of Haida Gwaii threespine stickleback (Gasterosteus aculeatus). Can J Zool 97:988–996

    Article  Google Scholar 

  • Pomiankowski A (1997) Genetic variation in fluctuating asymmetry. J Evol Biol 10:51–55

    Article  Google Scholar 

  • R Core Team (2020) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Reimchen TE (1989) Loss of nuptial color in threespine sticklebacks (Gasterosteus aculeatus). Evolution 43:450–460

    CAS  PubMed  Google Scholar 

  • Reimchen TE (1990) Size-structured mortality in a threespine stickleback (Gastrosteus aculeatus)—cutthroat trout (Oncorhynchus clarki) community. Can J Fish Aquat Sci 47:1194–1205

    Article  Google Scholar 

  • Reimchen TE, Bergstrom CA (2009) The ecology of asymmetry in stickleback defense structures. Evolution 63:115–126

    Article  PubMed  Google Scholar 

  • Reimchen TE, Nosil P (2001) Lateral plate asymmetry, diet and parasitism in threespine stickleback. J Evol Biol 14:632–645

    Article  Google Scholar 

  • Reimchen TE, Nosil P (2004) Variable predation regimes predict the evolution of sexual dimorphism in a population of threespine stickleback. Evolution 58:1274–1281

    CAS  PubMed  Google Scholar 

  • Reimchen TE, Nosil P (2006) Replicated ecological landscapes and the evolution of morphological diversity among Gasterosteus populations from an archipelago on the west coast of Canada. Can J Zool 84:643–654

    Article  Google Scholar 

  • Reimchen TE, Ingram T, Hansen SC (2008) Assessing niche differences of sex, armour and asymmetry phenotypes using stable isotope analyses in Haida Gwaii sticklebacks. Behaviour 145:561–577

    Article  Google Scholar 

  • Reimchen TE, Bergstrom CA, Nosil P (2013) Natural selection and the adaptive radiation of Haida Gwaii stickleback. Evol Ecol Res 15:241–269

    Google Scholar 

  • Reimchen TE, Steeves D, Bergstrom CA (2016) Sex matters for defence and trophic traits of threespine stickleback. Evol Ecol Res 17:459–485

    Google Scholar 

  • Rogers LJ (2017) A matter of degree: strength of brain asymmetry and behaviour. Symmetry 9:57

    Article  Google Scholar 

  • Schmitz A, Bleckmann H, Mogdans J (2014) The lateral line receptor array of cyprinids from different habitats. J Morphol 275:357–370

    Article  PubMed  Google Scholar 

  • Schwalbe MAB, Bassett DK, Webb JF (2012) Feeding in the dark: lateral-line-mediated prey detection in the peacock cichlid Aulonocara stuartgranti. J Exp Biol 215:2060–2071

    Article  PubMed  Google Scholar 

  • Spoljaric MA, Reimchen TE (2007) 10 000 years later: evolution of body shape in Haida Gwaii three-spined stickleback. J Fish Biol 70:1484–1503

    Article  Google Scholar 

  • Suli A, Watson GM, Rubel EW, Raible DW (2012) Rheotaxis in larval zebrafish Is mediated by lateral line mechanosensory hair cells. PLoS ONE 7:e29727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trokovic N, Herczeg G, McCairns SRJ et al (2011) Intraspecific divergence in the lateral line system in the nine-spined stickleback (Pungitius pungitius): Lateral line variation in sticklebacks. J Evol Biol 24:1546–1558

    Article  CAS  PubMed  Google Scholar 

  • Trokovic N, Herczeg G, Ab Ghani NI et al (2012) High levels of fluctuating asymmetry in isolated stickleback populations. BMC Evol Biol 12:115

    Article  PubMed  PubMed Central  Google Scholar 

  • Wada H, Ghysen A, Satou C et al (2010) Dermal morphogenesis controls lateral line patterning during postembryonic development of teleost fish. Dev Biol 340:583–594

    Article  CAS  PubMed  Google Scholar 

  • Wark AR, Peichel CL (2010) Lateral line diversity among ecologically divergent threespine stickleback populations. J Exp Biol 213:108–117

    Article  CAS  PubMed  Google Scholar 

  • Wark AR, Mills MG, Dang L-H et al (2012) Genetic architecture of variation in the lateral line sensory system of threespine sticklebacks. G3-Genes Genom Genet 2:1047–1056

    Google Scholar 

  • Werner YL, Seifan T (2006) Eye size in geckos: asymmetry, allometry, sexual dimorphism, and behavioral correlates. J Morphol 267:1486–1500

    Article  PubMed  Google Scholar 

  • Westin L (1998) The spawning migration of European silver eel (Anguilla anguilla L.) with particular reference to stocked eel in the Baltic. Fish Res 38:257–270

    Article  Google Scholar 

  • York CA, Bartol IK (2014) Lateral line analogue aids vision in successful predator evasion for the brief squid, Lolliguncula brevis. J Exp Biol 217:2437–2439

    PubMed  Google Scholar 

  • Yoshizawa M, Robinson BG, Duboué ER et al (2015) Distinct genetic architecture underlies the emergence of sleep loss and prey-seeking behavior in the Mexican cavefish. BMC Biol 13:15

    Article  PubMed  PubMed Central  Google Scholar 

  • Zucchini W (2000) An introduction to model selection. J Math Psychol 44:41–61

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Douglas, C. Bergstrom, and M. Spoljaric for field assistance and R. Marx, J. Taylor, and D. Wertman for discussion on this manuscript.

Funding

Financial support was provided by a King-Platt Fellowship to NP Planidin and a Natural Sciences and Engineering Council of Canada (NSERC) operating grant to TE Reimchen (NRC2354).

Author information

Authors and Affiliations

Authors

Contributions

Sample and biophysical data collection and research design was conducted by TE Reimchen. Lab work and data analysis was conducted by NP Planidin as part of a Master of Science. The manuscript was first drafted by NP Planidin and revised with the assistance of TE Reimchen.

Corresponding author

Correspondence to Thomas E. Reimchen.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethics approval

This research was undertaken and approved through the University of Victoria Animal Use for Research Protocol 2019–021(1), which follows the guidelines set by the Canadian Council for Animal Care.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Planidin, N.P., Reimchen, T.E. Ecological predictors of lateral line asymmetry in stickleback (Gasterosteus aculeatus). Evol Ecol 35, 609–629 (2021). https://doi.org/10.1007/s10682-021-10117-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-021-10117-w

Keywords

Navigation