Skip to main content

Advertisement

Log in

Switching cell structured direct AC–AC converter-based three-phase DVR system using interphase voltage

  • Original Article
  • Published:
Journal of Power Electronics Aims and scope Submit manuscript

Abstract

This paper presents a dynamic voltage restorer to solve the voltage sag problem that causes the most serious economic loss among various grid accidents. The proposed method, which uses a direct AC–AC converter, consists of a simple controller unlike methods using a voltage source inverter that is controlled using complex operations. Unlike the energy storage type, there is no additional energy storage device, which reduces system cost. In addition, unlike the back-to-back type, energy conversion loss is reduced by one stage conversion. A switching cell-structured direct AC–AC converter that solves the rectification problem without a separate sensor is a reliable structure that reduces the volumes of the passive filters by increasing the switching frequency. In addition, using interphase voltages, it can take a wide range of voltage compensations to compensate for most of the voltage sag in various situations. In this paper, the background of the study is revealed and the operating principles and control schemes of the proposed system are analyzed. Then, the validity of this study is confirmed through simulation and experiment results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 6
Fig. 5
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Trinh, Q.N., Lee, H.-H., Chun, T.W.: An enhanced harmonic voltage compensator for general loads in standalone distributed generation systems. J. Power Electron. 13(6), 1070–1079 (2013)

    Article  Google Scholar 

  2. Xu, H., Ma, X., Sun, D.: Reactive current and control for DFIG based wind turbines during grid voltage sag and swell conditions. J. Power Electron. 15(1), 235–245 (2015)

    Article  Google Scholar 

  3. Nielsen, J., Blaabjerg, F.: A detailed comparison of system topologies for dynamic voltage restorers. IEEE Trans. Ind. Appl. 41(5), 1272–1280 (2005)

    Article  Google Scholar 

  4. Kwon, B.-H., Jeong, G.Y., Han, S.-H., Lee, D.H.: Novel line conditioner with voltage up/down capability. IEEE Trans. Ind. Electron. 49(5), 1110–1119 (2002)

    Article  Google Scholar 

  5. Aeoliza, E.C., Enjeti, N.P., Moran, L.A., Montero-Hernandez, O.C., Kim, S.: Analysis and design of a novel voltage sag compensator for critical loads in electrical power distribution systems. IEEE Trans. Ind. Appl. 39(4), 1143–1150 (2003)

    Article  Google Scholar 

  6. Brumsickle, W.E., Schneider, R.S., Luckjiff, G.A., Divan, D.M., McGranaghan, M.F.: Dynamic sag correctors: cost-effective industrial power line conditioning. IEEE Trans. Ind. Appl. 37(1), 212–217 (2001)

    Article  Google Scholar 

  7. Subramanian, S., Mishra, M.K.: Interphase AC–AC topology for sag supporter. IEEE Trans. Power Electron. 25(2), 514–518 (2010)

    Article  Google Scholar 

  8. Jothibasu, S., Mishra, M.K.: A control scheme for storage less DVR based on characterization of voltage sags. IEEE Trans. Power Del. 29(5), 2261–2269 (2014)

    Article  Google Scholar 

  9. Yang, L.-Y., Wang, C.-L., Liu, J.-H., Jia, C.-X.: A novel phase locked loop for grid-connected converters under non-ideal grid conditions. J Power Electron 15(1), 216–226 (2015)

    Article  Google Scholar 

  10. Jimichi, T., Fujita, H., Akagi, H.: Design and experimentation of a dynamic voltage restorer capable of significantly reducing an energystorage element. IEEE Trans. Ind. Appl. 44(3), 817–825 (2008)

    Article  Google Scholar 

  11. Wang, B., Venkataramanan, G., Illindala, M.: Operation and control of a dynamic voltage restorer using transformer coupled H-bridge converters. IEEE Trans. Power Electron. 21(4), 1053–1061 (2006)

    Article  Google Scholar 

  12. Choi, N.-S., Han, B.-M., Nho, E.-C., Cha, H.: Dynamic voltage restorer using PWM AC–AC converter. In: Proc. Power Electron. Conf., pp. 2690–2695 (2010)

  13. Jothibasu, S., Mishra, M.K.: An improved direct AC–AC converter for voltage sag mitigation. IEEE Trans. Ind. Electron. 62(1), 21–29 (2015)

    Article  Google Scholar 

  14. Soeiro, T.B., Petry, C.A., dos Fagundes, J.C.S., Barbi, I.: Direct ac–ac converters using commercial power modules applied to voltage restorers. IEEE Trans. Ind. Electron. 58(1), 278–288 (2011)

    Article  Google Scholar 

  15. Park, C.-Y., Kwon, J.-M., Kwon, B.-H.: Automatic voltage regulator based on series voltage compensation with ac chopper. IET Power Electron. 5(6), 719–725 (2012)

    Article  Google Scholar 

  16. Shin, H., Cha, H., Kim, H.G., Yoo, D.W.: Novel single-phase PWM ac–ac converters solving commutation problem using switching cell structure and coupled inductor. IEEE Trans. Power Electron. 30(4), 2137–2147 (2015)

    Article  Google Scholar 

  17. Khan, A.A., Cha, H., Ahmed, H.F.: High-efficiency single-phase ac–ac converters without commutation problem. IEEE Trans. Power Electron. 31(8), 5655–5665 (2016)

    Article  Google Scholar 

  18. Kim, S., Kim, H.G., Cha, H.: Dynamic voltage restorer using switching cell structured multilevel ac-ac converter. IEEE Trans. Power Electron. 32(11), 8406–8418 (2017)

    Article  Google Scholar 

  19. Peng, F.Z., Chen, L., Zhang, F.: Simple topologies of PWM AC–AC converters. IEEE Power Electron. Lett. 1(1), 10–13 (2003)

    Article  Google Scholar 

  20. Kwon, B.H., Min, B.D., Kim, J.H.: Novel topologies of AC choppers. IEE Proc. Electron. Power Appl. 143(4), 323–330 (1996)

    Article  Google Scholar 

  21. Tolbert, L.M., Peng, F.Z., Khan, F.H., Li, S.: Switching cells and their implications for power electronic circuits. In: Proc. IEEE Int. Power Electron. Motion Conf., pp. 773–779 (2009)

  22. Khan, F.H., Tolbert, L.M., Peng, F.Z.: Deriving new topologies of DC–DC converters featuring basic switching cells. In: Proc. IEEE Workshop Comput. Power Electron., pp. 328–332 (2006)

  23. Chu, H.-Y., Jou, H.-L., Huang, C.-L.: Transient response of a peak voltage detector for sinusoidal signals. IEEE Trans. Ind. Electron. 39(1), 74–79 (1992)

    Article  Google Scholar 

  24. Wu, K.-D., Jou, H.-L.: An orthogonal peak detector for multiphase sinusoidal signals. IEEE Trans. Instrum. Meas. 49(6), 1216–1223 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20194030202310).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heung-Geun Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H., Kim, S., Cha, H. et al. Switching cell structured direct AC–AC converter-based three-phase DVR system using interphase voltage. J. Power Electron. 21, 1041–1051 (2021). https://doi.org/10.1007/s43236-021-00254-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43236-021-00254-4

Keywords

Navigation