Skip to main content
Log in

Bandgaps Creation with High Acoustic Losses in Gradient-Based Sonic Crystals

  • Original Paper
  • Published:
Acoustics Australia Aims and scope Submit manuscript

Abstract

A design of the sonic crystal (SC), called the gradient-based sonic crystal (GBSC), that uses the gradient of properties of the SC array is proposed as an improvement over the traditional design of SCs. The gradient of properties is obtained by changing the resonator dimensions and the distance between them throughout the array instead of keeping them uniform. Because of this non-uniformity, the supercell approximation was used to handle the non-ideal periodic conditions it induces in the array. GBSCs in non-uniform rectangular and triangular lattices were designed and analyzed using the finite element method. The results show that the GBSCs widen existing bandgaps, create new bandgaps, induce high acoustical losses compared to the uniform SCs of Helmholtz resonators (HR) or hollow scatterers (HS) and have similar space requirements. Therefore, the GBSCs can be used for acoustic attenuation in low-mid-high frequency bands. Parameters such as increasing or decreasing order of the resonator size and distance, and the resonator orientation were found to influence the attenuation by the GBSCs. Experiments were conducted on the traditional uniform HS sonic crystals and HR sonic crystals and their finite element (FE) models were developed which were later useful for developing robust FE models of the GBSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Yablonovitch, E.: Photonic band-gap structures. J. Opt. Soc. Am. B 10(2), 283 (1993). https://doi.org/10.1364/josab.10.000283

    Article  Google Scholar 

  2. Novotny, L., Hecht, B.: Photonic crystals, resonators, and cavity optomechanics. Princ. Nano Opt. (2012). https://doi.org/10.1017/cbo9780511794193.013

    Article  Google Scholar 

  3. Bragg, W.H., Bragg, W.L.: The reflection of X-rays by crystals. Proc. R. Soc. A Math. Phys. Eng. Sci. 88(605), 428–438 (1913). https://doi.org/10.1098/rspa.1913.0040

    Article  MATH  Google Scholar 

  4. Martínez-Sala, R., Sancho, J., Sánchez, J.V., et al.: Sound attenuation by sculpture. Nature 378, 241 (1995). https://doi.org/10.1038/378241a0

    Article  Google Scholar 

  5. Gupta, A., Lim, K.M., Chew, C.H.: A quasi two-dimensional model for sound attenuation by the sonic crystals. J. Acoust. Soc. Am. 132, 2909–2914 (2012). https://doi.org/10.1121/1.4744930

    Article  Google Scholar 

  6. Movchan, A.B., Guenneau, S.: Split-ring resonators and localized modes. Phys. Rev. B Condens. Matter Mater. Phys. 70, 1–5 (2004). https://doi.org/10.1103/PhysRevB.70.125116

    Article  Google Scholar 

  7. Peiró-Torres, M.P., Castiñeira-Ibáñez, S., Redondo, J., Sánchez-Pérez, J.V.: Interferences in locally resonant sonic metamaterials formed from Helmholtz resonators. Appl. Phys. Lett. 114, 1–5 (2019). https://doi.org/10.1063/1.5092375

    Article  Google Scholar 

  8. Hu, X., Chan, C.T., Zi, J.: Two-dimensional sonic crystals with Helmholtz resonators. Phys. Rev. E (2005). https://doi.org/10.1103/physreve.71.055601

    Article  Google Scholar 

  9. Wang, Z.G., Lee, S.H., Kim, C.K., et al.: Acoustic wave propagation in one-dimensional phononic crystals containing Helmholtz resonators. J. Appl. Phys. (2008). https://doi.org/10.1063/1.2894914

    Article  Google Scholar 

  10. Elford, D.P., Chalmers, L., Kusmartsev, F.V., Swallowe, G.M.: Matryoshka locally resonant sonic crystal. J. Acoust. Soc. Am. 130(5), 2746–2755 (2011). https://doi.org/10.1121/1.3643818

    Article  Google Scholar 

  11. Lee, H.M., Bin, T.L., Lim, K.M., Lee, H.P.: Acoustical performance of a sonic crystal window. Int. J. Mech. Eng. Robot. Res. 6(1), 6–10 (2017). https://doi.org/10.18178/ijmerr.6.1.6-10

    Article  Google Scholar 

  12. Sánchez-Dehesa, J., Garcia-Chocano, V.M., Torrent, D., Cervera, F., Cabrera, S., Simon, F.: Noise control by sonic crystal barriers made of recycled materials. J. Acoust. Soc. Am. 129(3), 1173–1183 (2011). https://doi.org/10.1121/1.3531815

    Article  Google Scholar 

  13. Miyashita, T., Inoue, C.: Numerical investigations of transmission and waveguide properties of sonic crystals by finite-difference time-domain method. Jpn. J. Appl. Phys. 40(Part 1, No. 5B), 3488–3492 (2001). https://doi.org/10.1143/jjap.40.3488

    Article  Google Scholar 

  14. Romero-García, V., Sánchez-Pérez, J.V., Garcia-Raffi, L.M.: Tunable wideband bandstop acoustic filter based on two-dimensional multiphysical phenomena periodic systems. J. Appl. Phys. 110(1), 014904 (2011). https://doi.org/10.1063/1.3599886

    Article  Google Scholar 

  15. Gupta, A., Lim, K.M., Chew, C.H.: A quasi two-dimensional model for sound attenuation by the sonic crystals. J. Acoust. Soc. Am. 132(4), 2909–2914 (2012). https://doi.org/10.1121/1.474493016

    Article  Google Scholar 

  16. Sharma, G.S., Eggler, D., Peters, H., Kessissoglou, N., Skvortsov, A., MacGillivray, I.: Acoustic performance of periodic composite materials. Acoustics 2015 Hunter Valley (Sydney, Australia)

  17. Kuang, W., Hou, Z., Liu, Y.: The effects of shapes and symmetries of scatterers on the phononic band gap in 2D phononic crystals. Phys. Lett. A 332(5–6), 481–490 (2004). https://doi.org/10.1016/j.physleta.2004.10.009

    Article  MATH  Google Scholar 

  18. Panda, D., Mohanty, A.R.: Broadening the Bandgaps of Sonic Crystals by Varying Shapes, Sizes and Orientations of the Scatterers. Volume 11: Acoustics, Vibration, and Phononics. American Society of Mechanical Engineers, New York (2018). https://doi.org/10.1115/IMECE2018-87398

    Book  Google Scholar 

  19. Lagarrigue, C., Groby, J.P., Tournat, V.: Sustainable sonic crystal made of resonating bamboo rods. J. Acoust. Soc. Am. 133, 247–254 (2013). https://doi.org/10.1121/1.4769783

    Article  Google Scholar 

  20. Castro, P.J., Barroso, J.J., Neto, J.P.L., Tomaz, A.: Microwave propagation experiments on a gradient array of split-ring resonators. In: SBMO/IEEE MTT-S International Microwave & Optoelectronics Conference (IMOC), Rio de Janeiro, pp. 1–5 (2013). https://doi.org/10.1109/IMOC.2013.6646542

  21. Castro, P.J., Barroso, J.J., Leite Neto, J.P., Tomaz, A., Hasar, U.C.: Experimental study of transmission and reflection characteristics of a gradient array of metamaterial split-ring resonators. J. Microw. 15(4), 380–389 (2016). https://doi.org/10.1590/2179-10742016v15i4658

    Article  Google Scholar 

  22. Sharma, G.S., Skvortsov, A., MacGillivray, I., Kessissoglou, N.: Sound absorption by rubber coatings with periodic voids and hard inclusions. Appl. Acoust. 143, 200–210 (2019). https://doi.org/10.1016/j.apacoust.2018.09.003

    Article  Google Scholar 

  23. Wang, S., Hu, B., Du, Y.: Sound absorption of periodically cavities with gradient changes of radii and distances between cavities in a soft elastic medium. Appl. Acoust. 170, 107501 (2020). https://doi.org/10.1016/j.apacoust.2020.107501

    Article  Google Scholar 

  24. Guild, M.D., Rodhe, C.A., Rothko, M.C., Sieck, C.F.: 3d printed acoustic metamaterial sound absorbers using functionally graded sonic crystals. In: Euronoise 2018, Crete

  25. Zhang, X.H., Qu, Z.G., Tian, D., Fang, Y.: Acoustic characteristics of continuously graded phononic crystals. Appl. Acoust. 151, 22–29 (2019). https://doi.org/10.1016/j.apacoust.2019.03.002

    Article  Google Scholar 

  26. Darabi, A., Leamy, M.J.: Analysis and experimental validation of an optimized gradient-index phononic-crystal lens. Phys. Rev. Appl. (2018). https://doi.org/10.1103/physrevapplied.10.024045

    Article  Google Scholar 

  27. Sharma, G.S., Faverjon, B., Dureisseix, D., Skvortsov, A., MacGillivray, I., Audoly, C., Kessissoglou, N.: Acoustic performance of a periodically voided viscoelastic medium with uncertainty in design parameters. ASME. J. Vib. Acoust. 142(6), 061002 (2020). https://doi.org/10.1115/1.4046859

    Article  Google Scholar 

  28. Wu, L.-Y., Chen, L.-W.: Wave propagation in a 2D sonic crystal with a Helmholtz resonant defect. J. Phys. D Appl. Phys. 43(5), 055401 (2010). https://doi.org/10.1088/0022-3727/43/5/055401

    Article  Google Scholar 

  29. Montiel, F., Chung, H., Karimi, M., Kessissoglou, N.: An analytical and numerical investigation of acoustic attenuation by a finite sonic crystal. Wave Motion 70, 135–151 (2017). https://doi.org/10.1016/j.wavemoti.2016.12.002

    Article  MathSciNet  MATH  Google Scholar 

  30. ASTM D1785-15e1: Standard Specification for Poly Vinyl Chloride (PVC) Plastic Pipe, Schedules 40, 80, and 120. ASTM International, West Conshohocken, PA (2015). https://doi.org/10.1520/D1785-15E01

    Book  Google Scholar 

  31. Chiariotti, P., Martarelli, M., Castellini, P.: Acoustic beamforming for noise source localization—reviews, methodology and applications. Mech. Syst. Signal Process. 120, 422–448 (2019). https://doi.org/10.1016/j.ymssp.2018.09.019

    Article  Google Scholar 

  32. COMSOL Acoustics Module, pp. 1–218

  33. Sigalas, M.M.: Elastic wave band gaps and defect states in two-dimensional composites. J. Acoust. Soc. Am. 101, 1256–1261 (1997). https://doi.org/10.1121/1.418156

    Article  Google Scholar 

  34. Sigalas, M.M.: Defect states of acoustic waves in a two-dimensional lattice of solid cylinders. J. Appl. Phys. 84, 3026–3030 (1998). https://doi.org/10.1063/1.368456

    Article  Google Scholar 

  35. Wu, F., Hou, Z., Liu, Z., Liu, Y.: Point defect states in two-dimensional phononic crystals. Phys. Lett. A 292(3), 198–202 (2001). https://doi.org/10.1016/s0375-9601(01)00800-3

    Article  Google Scholar 

  36. Wu, L.Y., Chen, L.W., Liu, C.M.: Acoustic energy harvesting using resonant cavity of a sonic crystal. Appl. Phys. Lett. 95(1), 013506 (2009). https://doi.org/10.1063/1.3176019

    Article  Google Scholar 

  37. Romero-García, V., Sánchez-Pérez, J.V., Garcia-Raffi, L.M.: Evanescent modes in sonic crystals: complex dispersion relation and supercell approximation. J. Appl. Phys. 108(4), 044907 (2010). https://doi.org/10.1063/1.3466988

    Article  Google Scholar 

  38. Yang, A., Li, P., Wen, Y., Lu, C., Peng, X., Zhang, J., He, W.: Enhanced acoustic wave localization effect using coupled sonic crystal resonators. Appl. Phys. Lett. 104(15), 151904 (2014). https://doi.org/10.1063/1.4871804

    Article  Google Scholar 

  39. Harms, P., Mittra, R., Ko, W.: Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures. IEEE Trans. Antennas Propag. 42(9), 1317–1324 (1994). https://doi.org/10.1109/8.318653

    Article  Google Scholar 

  40. Kittel, C.: Introduction to Solid State Physics. Wiley, New York (2004).. (ISBN: 9780471415268)

    MATH  Google Scholar 

  41. Sandberg, U.: The multi-coincidence peak around 1000 Hz in tyre/road noise spectra. Euronoise Naples 2003, 498 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Panda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panda, D., Mohanty, A.R. Bandgaps Creation with High Acoustic Losses in Gradient-Based Sonic Crystals. Acoust Aust 49, 473–484 (2021). https://doi.org/10.1007/s40857-021-00242-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40857-021-00242-5

Keywords

Navigation