Skip to main content
Log in

Melt electrowriting stacked architectures with high aspect ratio

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Melt electrowriting (MEW) approach with constant working distance has been developed to weaken the charge interferences and to enhance the architecture mechanical strength, by which various stacked architectures with high aspect ratio can be achieved. The deposited fiber guides the subsequent jet to print layer by layer along the pre-designed patterns without fiber pulsing. The position of the nozzle is raised simultaneously during the direct-writing process to maintain a constant working distance, and then, the deposition offset of the fiber layer can be decreased. The effects of the processing parameters on the MEW fibers with diameters distributed in the range of 50–125 µm have been studied. Patterns of polygon and characters with fiber layer number of 200 and aspect ratio higher than 180 are direct-written accurately. The maximum height of the direct-written patterns reaches 9 mm. The proposed approach is a good method to realize the direct additive manufacturing of high-aspect-ratio architectures and to promote its industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.B. Qasim, M.S. Zafar, S. Najeeb, Z. Khurshid, A.H. Shah, S. Husain, I.U. Rehman, Int. J. Mol. Sci. 19, 407 (2018)

    Article  Google Scholar 

  2. P. Ramiah, L.C.D. Toit, Y.E. Choonara, P.P.D. Kondiah, V. Pillay, Front. Mater. 7, 76 (2020)

    Article  ADS  Google Scholar 

  3. G. Jin, R. He, B. Sha, W. Li, H. Qing, R. Teng, F. Xu, Mater. Sci. Eng. C 92, 995 (2018)

    Article  Google Scholar 

  4. M. Edi, K.J. Lampe, Front. Mater. 5, 2 (2018)

    Article  ADS  Google Scholar 

  5. A.V. Mironov, O.A. Mironova, M.A. Syachina, V.K. Popov, Polymer 182, 121845 (2019)

    Article  Google Scholar 

  6. C. Chang, V.H. Tran, J. Wang, Y.-K. Fuh, L. Lin, Nano Lett. 10, 726 (2010)

    Article  ADS  Google Scholar 

  7. H. Li, R. Li, X. Fang, H. Jiang, X. Ding, B. Tang, G. Zhou, R. Zhou, Y. Tang, Nano Energy 58, 447 (2019)

    Article  Google Scholar 

  8. T. Gao, Z. Zhou, J. Yu, J. Zhao, G. Wang, D. Cao, B. Ding, Y. Li, Adv. Energy Mater. 9, 1802578 (2019)

    Article  Google Scholar 

  9. P.G. Liu, Z.Y. Zhang, R. Hao, Y.P. Huang, W.F. Liu, Y.Y. Tan, P.L. Li, J. Yan, K.Y. Liu, Chem. Eng. J. 403, 126425 (2021)

    Article  Google Scholar 

  10. G. Zheng, Y. Pei, X. Wang, J. Zheng, D. Sun, Chin. Phys. B 23, 066102 (2014)

    Article  ADS  Google Scholar 

  11. W. Xu, S. Zhang, W. Xu, Sci. China Mater. 62, 1709 (2019)

    Article  Google Scholar 

  12. G. Zheng, J. Jiang, D. Wu, D. Sun, Electrospinning: Nanofabrication and Applications (Elsevier, 2019), p. 283

    Book  Google Scholar 

  13. D.Z. Wang, X.J. Zhao, Y.G. Lin, T.Q. Ren, J.S. Liang, C. Liu, L.D. Wang, Front. Mech. Eng. 12, 477 (2017)

    Article  Google Scholar 

  14. G. Zheng, W. Li, X. Wang, D. Wu, D. Sun, L. Lin, J. Phys. D Appl. Phys. 43, 415501 (2010)

    Article  Google Scholar 

  15. G. Zheng, Z. Yu, M. Zhuang, W. Wei, D. Sun, Appl. Phys. A 116, 171 (2013)

    Article  ADS  Google Scholar 

  16. Y. Cai, J. Li, C.K. Poh, H.C. Tan, E. SanThian, J.Y.H. Fuh, J. Sun, B.Y. Tay, W. Wang, J. Mater. Chem. B 1, 5971 (2013)

    Article  Google Scholar 

  17. Z.-C. Yao, J.-C. Wang, Z. Ahmad, J.-S. Li, M.-W. Chang, Mater. Sci. Eng. C 97, 776 (2019)

    Article  Google Scholar 

  18. G. Zheng, J. Jiang, X. Wang, W. Li, Z. Yu, L. Lin, Mater. Des. 198, 109304 (2021)

    Article  Google Scholar 

  19. M. Mao, J. He, X. Li, B. Zhang, Q. Lei, Y. Liu, D. Li, Micromachines 8, 113 (2017)

    Article  Google Scholar 

  20. C.B. Dayan, F. Afghah, B.S. Okan, M. Yıldız, Y. Menceloglu, M. Culha, B. Koc, Mater. Des. 148, 87 (2018)

    Article  Google Scholar 

  21. F.M. Wunner, M.L. Wille, T.G. Noonan, O. Bas, P.D. Dalton, E.M. De-Juan-Pardo, D.W. Hutmacher, Adv. Mater. 30, 1706570 (2018)

    Article  Google Scholar 

  22. F. Afghah, C. Dikyol, M. Altunbek, B. Koc, Appl. Sci. 9, 3540 (2019)

    Article  Google Scholar 

  23. D. Gao, J.G. Zhou, Int. J. Bioprint 5, 172 (2019)

    Google Scholar 

  24. Q. Gao, C. Xie, P. Wang, M. Xie, H. Li, A. Sun, J. Fu, Y. He, Mater. Sci. Eng. C 107, 110269 (2020)

    Article  Google Scholar 

  25. J. Kim, E. Bakirci, K.L. O’Neill, A. Hrynevich, P.D. Dalton, Macromol. Mater. Eng. 306, 2000685 (2021)

    Article  Google Scholar 

  26. T.D. Brown, P.D. Dalton, D.W. Hutmacher, Adv. Mater. 23, 5651 (2011)

    Article  Google Scholar 

  27. D.W. Hutmacher, P.D. Dalton, Chem. Asian J. 6, 44 (2011)

    Article  Google Scholar 

  28. G. Hochleitner, J.F. Hummer, R. Luxenhofer, J. Groll, Polymer 55, 5017 (2014)

    Article  Google Scholar 

  29. N.T. Saidy, F. Wolf, O. Bas, H. Keijdener, D.W. Hutmacher, P. Mela, E.M. De-Juan-Pardo, Small 15, 1900873 (2019)

    Article  Google Scholar 

  30. I. Liashenko, A. Hrynevich, P.D. Dalton, I. Liashenko, Adv. Mater. 32, 2001874 (2020)

    Article  Google Scholar 

  31. G. Zheng, L. Sun, W. Xiang, W. Jin, X. Lei, Y. Liu, J. Zheng, J. Liu, Appl. Phys. A 122, 112 (2016)

    Article  ADS  Google Scholar 

  32. A. Hrynevich, B.S. Elci, J.N. Haigh, R. McMaster, A. Youssef, C. Blum, T. Blunk, G. Hochleitner, J. Groll, P.D. Dalton, Small 14, 1800232 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (No. 51805460), Science and Technology Planning Project of Fujian Province (Nos. 2020H6003, 2019H0038), Science and Technology Planning Project of Guangdong Province (No. 2017ZC0222), National Natural Science Foundation of Guangdong Province (No. 2018A030313522), Guangzhou Science and Technology Plan Project (No. 201803010065), Guangzhou Science and Technology Plan Project (No. 202102010251) and Science and Technology Planning Project of Shenzhen Municipality in China (No. JCYJ20180306173000073).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gaofeng Zheng or Ping Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, G., Fu, G., Jiang, J. et al. Melt electrowriting stacked architectures with high aspect ratio. Appl. Phys. A 127, 410 (2021). https://doi.org/10.1007/s00339-021-04582-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04582-x

Keywords

Navigation