Skip to main content
Log in

Structural and magnetic properties of polycrystalline Zn1−xMnxO films synthesized on glass and p-type Si substrates using Sol–Gel technique

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The structure and magnetization of polycrystalline Zn1−xMnxO3 films (\(0 \le x \le 0.1)\) grown on glass and Si substrates using Sol–Gel technique have been studied. The average grain sizes of between 20 and 30 nm for nano-sphere structured polycrystalline samples grown on the glass substrate have been obtained in a result of X-ray diffraction analysis. Changes in the structural parameters by the increase in Mn content have been observed. Average grain sizes and porosities of the samples have been obtained from SEM studies. It has been revealed that the films grown on glass substrates did not exhibit ferromagnetic order even after thermal treatment. On the contrary, Zn1−xMnxO3 films with Mn contents of x = 0.05 and 0.10 grown on Si substrate exhibited ferromagnetic properties after thermal annealing. This phenomenon has been interpreted on the base of the existence of carrier mediated magnetic ordering in Zn1−xMnxO3 diluted magnetic semiconductors. In a result, a procedure of thermal treatment is suggested for achieving of the room temperature ferromagnetism in Mn doped ZnO films synthesized on p-type Si substrates for their applications as magnetic semiconductor material in spintronic devices.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4

Similar content being viewed by others

References

  1. H. Ohno, Science 281, 951 (1998)

    Article  ADS  Google Scholar 

  2. G.A. Prinz, Science 282, 1660 (1998)

    Article  Google Scholar 

  3. J.H. Park, E. Vescovo, H.J. Kim, C. Kwon, R. Ramesh, T. Venkatesan, Nature 392, 794 (1998)

    Article  ADS  Google Scholar 

  4. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Science 294, 1488 (2001)

    Article  ADS  Google Scholar 

  5. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019 (2000)

    Article  ADS  Google Scholar 

  6. T. Dietl, H. Ohno, F. Matsukura, Phys. Rev. B 63, 195205 (2001)

    Article  ADS  Google Scholar 

  7. R. Janisch, P. Gopal, N.A. Spaldin, J. Phys. Condens. Matter 17, R657 (2005)

    Article  ADS  Google Scholar 

  8. K. Ueda, H. Tabata, T. Kawai, Appl. Phys. Lett. 79, 988 (2001)

    Article  ADS  Google Scholar 

  9. T. Wakano, N. Fujimura, Y. Morinaga, N. Abe, A. Ashida, T. Ito, Phys. E 10, 260 (2001)

    Article  Google Scholar 

  10. J.-H. Guo, A. Gupta, P. Sharma, K.V. Rao, M.A. Marcus, C.L. Dong, J.M.O. Guillen, S.M. Butorin, M. Mattesini, P.A. Glans, K.E. Smith, C.L. Chang, R. Ahuja, J. Phys. Condens. Matter 19, 172202 (2007)

    Article  ADS  Google Scholar 

  11. S.Y. Park, P.J. Kim, Y.P. Lee, S.W. Shin, T.H. Kim, J.H. Kang, J.Y. Rhee, Adv. Mater. 19, 3496 (2007)

    Article  Google Scholar 

  12. J.B. Wang, G.J. Huang, X.L. Zhong, L.Z. Sun, Y.C. Zhou, Appl. Phys. Lett. 88, 252502 (2006)

    Article  ADS  Google Scholar 

  13. U. Philipose, V.N. Selvakumar, S. Trudel, C.F. de Souza, S. Aouba, R.H. Hill, H.E. Ruda, Appl. Phys. Lett. 88, 263101 (2006)

    Article  ADS  Google Scholar 

  14. W. Yan, Z. Sun, Q. Liu, Z. Li, Z. Pan, J. Wang, S. Wei, D. Wang, Y. Zhou, X. Zhang, Appl. Phys. Lett. 91, 062113 (2007)

    Article  ADS  Google Scholar 

  15. S.S. Kim, J.H. Moon, B.T. Lee, O.S. Song, J.H. Je, J. Appl. Phys. 95, 454 (2004)

    Article  ADS  Google Scholar 

  16. A. Tiwari, C. Jin, A. Kvit, D. Kumar, J.F. Muth, J. Narayan, Solid State Commun. 121, 371 (2002)

    Article  ADS  Google Scholar 

  17. P. Sharma, A. Gupta, K.V. Rao, F.J. Owens, R. Sharma, R. Ahuja, J.M.O. Gillen, B. Johasson, G.A. Gehring, Nat. Mater. 2, 673 (2003)

    Article  ADS  Google Scholar 

  18. C.N.R. Rao, F.L. Deepak, J. Mater. Chem. 15, 573 (2005)

    Article  Google Scholar 

  19. H. Liu, J. Yang, Y. Zhang, Y. Wang, N. Wei, Chem. Phys. 112, 1021 (2008)

    Google Scholar 

  20. N. Khare, M.J. Kappers, M. Wei, M.G. Blamire, J.L. MacManus-Driscoll, Adv. Mater. 18, 1449 (2006)

    Article  Google Scholar 

  21. D.E. Motaung, I. Kortidis, D. Papadaki, S.S. Nkosi, G.H. Mhlongo, J. Wesley-Smith, G.F. Malgas, B.W. Mwakikunga, E. Coetsee, H.C. Swart, G. Kiriakidis, S.S. Ray, Appl. Surf. Sci. 311, 14 (2014)

    Article  ADS  Google Scholar 

  22. J.M.D. Coey, M. Venkatesan, C.B. Fitzerald, Nat. Mater. 4, 173 (2005)

    Article  ADS  Google Scholar 

  23. Z. Wu, L. Guo, K. Cheng, F. Zhang, R. Guan, Optoelectron. Lett. 12, 0052 (2016)

    Article  ADS  Google Scholar 

  24. Y. Chang, P. Wang, Q. Sun, Y. Wang, Y. Long, J. Nanomater. 2011, 367156 (2011)

    Google Scholar 

  25. M.K. Lima, D.M. Fernandes, M.F. Silva, M.L. Baesso, A.M. Neto, G.R. Morais, C.V. Nakamura, A.O. Caleare, A.A.W. Hechenleitner, E.A.G. Pineda, J. Sol Gel Sci. Technol. 72, 301 (2014)

    Article  Google Scholar 

  26. J. Fan, F. Jiang, Z. Quan, X. Qing, X. Xu, Mater. Res. Bull. 47, 3344 (2012)

    Article  Google Scholar 

  27. M. Stefanescu, M. Stoia, C. Caizer, T. Dippong, P. Barvinschi, J. Therm. Anal. Calorim. 97, 245 (2009)

    Article  Google Scholar 

  28. M. Stefanescu, M. Stoia, T. Dippong, O. Stefanescu, P. Barvinschi, Acta Chim. Slov. 56, 379 (2009)

    Google Scholar 

  29. P. Barvinschi, O. Stefanescu, T. Dippong, S. Sorescu, M, Stefanescu. J. Therm. Anal. Calorim. 112, 447 (2013)

    Article  Google Scholar 

  30. T. Dippong, E.A. Levei, O. Cadar, A. Mesaros, G. Borodi, J. Anal. Appl. Pyrolysis 125, 169 (2017)

    Article  Google Scholar 

  31. G. Pei, F. Wu, C. Xia, J. Zhang, X. Li, J. Xu, Curr. Appl. Phys. 8, 18 (2008)

    Article  ADS  Google Scholar 

  32. T. Dippong, E.A. Levei, F. Goga, I. Petean, A. Avram, O. Cadar, J. Sol Gel Sci. Technol. 92, 736 (2019)

    Article  Google Scholar 

  33. T. Dippong, O. Cadar, I.G. Deac, M. Lazar, G. Borodi, E.A. Levei, J. Alloys Compds. 828, 154409 (2020)

    Article  Google Scholar 

  34. F. Mikailzade, H. Türkan, F. Önal, Ö. Karataş, S. Kazan, M. Zarbali, A. Göktaş, A. Tumbul, Appl. Phys. A 126, 768 (2020)

    Article  ADS  Google Scholar 

  35. M. Voigt, M. Klaumünzer, H. Thiem, W. Peukert, J. Phys. Chem. C 114, 6243 (2010)

    Article  Google Scholar 

  36. P. Singh, A. Kaushal, D. Kaur, J. Alloys, Compounds 471, 11 (2009)

    Article  Google Scholar 

  37. A. Goktas, I.H. Mutlu, Y. Yamada, E. Celik, J. Alloys Compds. 553, 259 (2013)

    Article  Google Scholar 

  38. T. Dippong, O. Cadar, E.A. Leveib, I.-G. Deacc, G. Borodi, Ceram. Int. 44, 10478 (2018)

    Article  Google Scholar 

  39. T. Dippong, E.-A. Levei, I.G. Deac, F. Goga, O. Cadar, J. Anal. Appl. Pyrolysis 144, 104713 (2019)

    Article  Google Scholar 

  40. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1953), p. 142

    MATH  Google Scholar 

  41. W. Chen, L.F. Zhao, Y.Q. Wang, J.H. Miao, S. Liu, Z.C. Xia, S.L. Yuan, Solid State Commun. 134, 827 (2005)

    Article  ADS  Google Scholar 

  42. X.M. Cheng, C.L. Chien, J. Appl, Phys. 93, 7876 (2003)

    Google Scholar 

  43. S.-J. Han, T.-H. Jang, Y.B. Kim, B.-G. Park, J.-H. Park, Y.H. Jeong, Appl. Phys. Lett. 83, 920 (2003)

    Article  ADS  Google Scholar 

  44. K. Masuko, A. Ashida, T. Yoshimura, N. Fujimura, J. Appl, Physics 103, 043714 (2008)

    Google Scholar 

  45. T. Fukumura, Z. Jin, M. Kawasaki, Appl. Phys. Lett. 78, 958 (2001)

    Article  ADS  Google Scholar 

  46. N. Gopalakrishnan, L. Balakrishnan, A. Brindha, G. Jayalakshmi, Cryst. Res. Technol. 47, 45 (2012)

    Article  Google Scholar 

  47. R. Karmakar, S.K. Neogi, N. Midya, A. Banerjee, S. Bandyopadhyay, J. Mater. Sci. Mater Electron. 27, 6371 (2016)

    Article  Google Scholar 

  48. Z.L. Lu, G.Q. Yan, S. Wang, W.Q. Zou, Z.R. Mo, L.Y. Lv, F.M. Zhang, Y.W. Du, M.X. Xu, Z.H. Xia, J. Appl, Physics 104, 033919 (2008)

    Google Scholar 

  49. M. Ashokkumar, S. Muthukumaran, Phys. E 69, 354 (2015)

    Article  Google Scholar 

  50. M.A. Ruderman, C. Kittel, Phys. Rev. 96, 99 (1954)

    Article  ADS  Google Scholar 

  51. T. Kasuya, Prog. Theor. Phys. 16, 45 (1956)

    Article  ADS  Google Scholar 

  52. K. Yoshida, Phys. Rev. 106, 893 (1957)

    Article  ADS  Google Scholar 

  53. T. Hayashi, Y. Hashimoto, S. Katsumoto, Y. Iye, Appl. Phys. Lett. 78, 1691 (2001)

    Article  ADS  Google Scholar 

  54. K. Sato, H. Katayama-Yoshida, Phys. B 308–310, 904 (2001)

    Article  ADS  Google Scholar 

  55. K. Sato, H. Katayama-Yoshida, Phys. E 10, 251 (2001)

    Article  Google Scholar 

  56. T.M. Souza, I.C. da Cunha Lima, M.A. Boselli, Appl. Phys. Lett. 92, 152511 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Mikailzade.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikailzade, F., Türkan, H., Önal, F. et al. Structural and magnetic properties of polycrystalline Zn1−xMnxO films synthesized on glass and p-type Si substrates using Sol–Gel technique. Appl. Phys. A 127, 408 (2021). https://doi.org/10.1007/s00339-021-04519-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04519-4

Keywords

Navigation