Skip to main content
Log in

Continual learning classification method and its application to equipment fault diagnosis

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Classification methods play a significant role in the fault diagnosis field. However, they cannot effectively recognize new types of fault data and improve their classification performance timely through learning the testing data, for they lack continual learning ability. Inspired by the continual learning mechanism of the biological immune system, we propose a continual learning classification method (CLCM) and apply it to equipment fault diagnosis. During the testing stage, it continually cultivates new memory cells and new types of memory cells through learning the testing data to improve its classification performance. It classifies the known types of data and clusters the new types of data. Experimental evidence on six well-known datasets from the UCI repository and ball bearing test data verified its effectiveness and superiority. Results show that it has better classification performance when the testing data include all types of data, and it outperforms the other methods when the testing data include new types of data, especially new types of labeled data. The fewer types of training data, the more advantages it has.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Jordan MI, Mitchell TM (2015) Machine learning: trends, perspectives, and prospects. Science 349:255–260. https://doi.org/10.1126/science.aaa8415

    Article  MathSciNet  MATH  Google Scholar 

  2. Liu Y, Chen SQ, Guan B, Xu P (2019) Layout optimization of large-scale oil-gas gathering system based on combined optimization strategy. Neurocomputing 332:159–183. https://doi.org/10.1016/j.neucom.2018.12.021

    Article  Google Scholar 

  3. Ren MF, Zhang QC, Zhang JH (2019) An introductory survey of probability density function control. Syst Sci Control Eng 7(1):158–170. https://doi.org/10.1080/21642583.2019.1588804

    Article  MathSciNet  Google Scholar 

  4. Xiao SG, Liu SL, Song MM, Ang N, Zhang HL (2020) Coupling rub-impact dynamics of double translational joints with subsidence for time-varying load in a planar mechanical system. Multibody Syst Dyn 48:451–486. https://doi.org/10.1007/s11044-019-09718-9

    Article  MathSciNet  MATH  Google Scholar 

  5. Yin X, Zhang QC, Wang H, Ding ZT (2019) Rbfnn-based minimum entropy filtering for a class of stochastic nonlinear systems. IEEE T Automat Contr 65:376–381. https://doi.org/10.1109/TAC.2019.2914257

    Article  MathSciNet  MATH  Google Scholar 

  6. Zhou YY, Zhang QC, Wang H, Zhou P, Chai TY (2017) Ekf-based enhanced performance controller design for nonlinear stochastic systems. IEEE T Automat Contr 63:1155–1162. https://doi.org/10.1109/TAC.2017.2742661

    Article  MathSciNet  MATH  Google Scholar 

  7. Kotsiantis SB, Zaharakis ID, Pintelas PE (2006) Machine learning: a review of classification and combining techniques. Artif Intell Rev 26:159–190. https://doi.org/10.1007/s10462-007-9052-3

    Article  Google Scholar 

  8. Jain AK, Duin RPW, Mao J (2000) Statistical pattern recognition: a review. IEEE T Pattern Anal 22(1):4–37. https://doi.org/10.1109/34.824819

    Article  Google Scholar 

  9. Schwenker F, Trentin E (2014) Pattern classification and clustering: a review of partially supervised learning approaches. Pattern Recogn Lett 37:4–14. https://doi.org/10.1016/j.patrec.2013.10.017

    Article  Google Scholar 

  10. Skryjomski P, Krawczyk B, Cano A (2019) Speeding up k-nearest neighbors classifier for large-scale multi-label learning on GPUs. Neurocomputing 354:10–19. https://doi.org/10.1016/j.neucom.2018.06.095

    Article  Google Scholar 

  11. Kabir S, Papadopoulos Y (2019) Applications of Bayesian networks and petri nets in safety, reliability, and risk assessments: a review. Safety Sci 115:154–175. https://doi.org/10.1016/j.ssci.2019.02.009

    Article  Google Scholar 

  12. Amer M, Maul T (2019) A review of modularization techniques in artificial neural networks. Artif Intell Rev 52:527–561. https://doi.org/10.1007/s10462-019-09706-7

    Article  Google Scholar 

  13. Nalepa J, Kawulok M (2019) Selecting training sets for support vector machines: a review. Artif Intell Rev 52:857–900. https://doi.org/10.1007/s10462-017-9611-1

    Article  Google Scholar 

  14. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444. https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  15. Pouyanfar S, Sadiq S, Yan Y, Tian H, Tao Y, Reyes MP, Shyu ML, Chen SC, Iyengar SS (2019) A survey on deep learning: algorithms, techniques, and applications. ACM Comput Surv 51(5):92–36. https://doi.org/10.1145/3234150

    Article  Google Scholar 

  16. Wu QE, Guang MK, Chen H, Sun LJ (2020) Semigroup of fuzzy automata and its application for fast accurate fault diagnosis on machine and anti-fatigue control. Appl Intell 50(5):1542–1557. https://doi.org/10.1007/s10489-019-01611-4

    Article  Google Scholar 

  17. Deng HX, Diao YF, Wu W, Zhang J, Ma MC, Zhong X (2020) A high-speed D-CART online fault diagnosis algorithm for rotor systems. Appl Intell 50(1):29–41. https://doi.org/10.1007/s10489-019-01516-2

    Article  Google Scholar 

  18. Xue YT, Zhang L, Wang BJ, Zhang Z, Li FZ (2018) Nonlinear feature selection using Gaussian kernel SVM-RFE for fault diagnosis. Appl Intell 48(10):3306–3331. https://doi.org/10.1007/s10489-018-1140-3

    Article  Google Scholar 

  19. Singh J, Azamfar M, Li F, Lee J (2021) A systematic review of machine learning algorithms for prognostics and health management of rolling element bearings: fundamentals, concepts and applications. Meas Sci Technol 32(1):012001. https://doi.org/10.1088/1361-6501/ab8df9

    Article  Google Scholar 

  20. Hu CF, Wang YX, Gu JW (2020) Cross-domain intelligent fault classification of bearings based on tensor-aligned invariant subspace learning and two-dimensional convolutional neural networks. Knowl-Based Syst 209:106214. https://doi.org/10.1016/j.knosys.2020.106214

    Article  Google Scholar 

  21. Hu CF, He SL, Wang YX (2020) A classification method to detect faults in a rotating machinery based on kernelled support tensor machine and multilinear principal component analysis. Appl Intell 51:2609–2621. https://doi.org/10.1007/s10489-020-02011-9

    Article  Google Scholar 

  22. Deng W, Yao Y, Zhao HM, Yang XH, Li GY (2019) A novel intelligent diagnosis method using optimal LS-SVM with improved PSO algorithm. Soft Comput 23(7):2445–2462. https://doi.org/10.1007/s00500-017-2940-9

    Article  Google Scholar 

  23. Gunerkar RS, Jalan AK, Belgamwar SU (2019) Fault diagnosis of rolling element bearing based on artificial neural network. J Mech Sci Technol 33(2):505–511. https://doi.org/10.1007/s12206-019-0103-x

    Article  Google Scholar 

  24. Zhou ZT, Chen JL, Zi YY, An T (2020) A modified SOM method based on nonlinear neural weight updating for bearing fault identification in variable speed condition. J Mech Sci Technol 34(5):1901–1912. https://doi.org/10.1007/s12206-020-0412-0

    Article  Google Scholar 

  25. Wang YJ, Ding XX, Zeng Q, Wang LM, Shao YM (2021) Intelligent rolling bearing fault diagnosis via vision ConvNet. IEEE Sensors J 21(5):6600–6609. https://doi.org/10.1109/JSEN.2020.3042182

    Article  Google Scholar 

  26. Yu WK, Zhao CH (2020) Broad convolutional neural network based industrial process fault diagnosis with incremental learning capability. IEEE T Ind Electron 67:5081–5091. https://doi.org/10.1109/TIE.2019.2931255

    Article  Google Scholar 

  27. Feng LJ, Zhao CH, Chen CLP, Li YL, Zhou M, Qiao HL, Fu C (2020) BNGBS: an efficient network boosting system with triple incremental learning capabilities for more nodes, samples, and classes. Neurocomputing 412:486–501. https://doi.org/10.1016/j.neucom.2020.06.100

    Article  Google Scholar 

  28. Chai Z, Zhao CH (2020) Multiclass oblique random forests with dual-incremental learning capacity. IEEE T Neur Net Lear 31:5192–5203. https://doi.org/10.1109/TNNLS.2020.2964737

    Article  Google Scholar 

  29. Liu B (2017) Lifelong machine learning: a paradigm for continuous learning. Front Comput Sci 11(3):359–361. https://doi.org/10.1007/s11704-016-6903-6

    Article  Google Scholar 

  30. Parisi GI, Kemker R, Part JL, Kanan C, Wermter S (2019) Continual lifelong learning with neural networks: a review. Neural Netw 113:54–71. https://doi.org/10.1016/j.neunet.2019.01.012

    Article  Google Scholar 

  31. Dasgupta D, Yu SH, Nino F (2011) Recent advances in artificial immune systems: models and applications. Appl Soft Comput 11(2):1574–1587. https://doi.org/10.1016/j.asoc.2010.08.024

    Article  Google Scholar 

  32. Lundegaard C, Lund O, Keşmir C, Brunak S, Nielsen M (2007) Modeling the adaptive immune system: predictions and simulations. Bioinformatics 23(24):3265–3275. https://doi.org/10.1093/bioinformatics/btm471

    Article  Google Scholar 

  33. Cooper MD, Alder MN (2006) The evolution of adaptive immune systems. Cell 124(4):815–822. https://doi.org/10.1016/j.cell.2006.02.001

    Article  Google Scholar 

  34. Medzhitov R (2007) Recognition of microorganisms and activation of the immune response. Nature 449:819–826. https://doi.org/10.1038/nature06246

    Article  Google Scholar 

  35. Ishida Y (1990) Fully distributed diagnosis by PDP learning algorithm: towards immune network PDP model. In: 1990 International Joint Conference on Neural Networks. IEEE, pp 777-782. https://doi.org/10.1109/IJCNN.1990.137663

  36. Forrest S, Perelson AS, Allen L, Cherukuri R (1994) Self-nonself discrimination in a computer. In: 1994 IEEE Computer Society Symposium on Research in Security and Privacy. IEEE, pp 202-212

  37. De Castro LN, Von Zuben FJ (2002) Learning and optimization using the clonal selection principle. IEEE T Evolut Comput 6(3):239–251. https://doi.org/10.1109/TEVC.2002.1011539

    Article  Google Scholar 

  38. Bayar N, Darmoul S, Hajri-Gabouj S, Pierreval H (2015) Fault detection, diagnosis and recovery using artificial immune systems: a review. Eng Appl Artif Intell 46:43–57. https://doi.org/10.1016/j.engappai.2015.08.006

    Article  Google Scholar 

  39. Zheng JQ, Chen YF, Zhang W (2010) A survey of artificial immune applications. Artif Intell Rev 34:19–34. https://doi.org/10.1007/s10462-010-9159-9

    Article  Google Scholar 

  40. Li D, Liu SL, Zhang HL (2017) A method of anomaly detection and fault diagnosis with online adaptive learning under small training samples. Pattern Recogn 64:374–385. https://doi.org/10.1016/j.patcog.2016.11.026

    Article  Google Scholar 

  41. Li D, Liu SL, Gao FR, Sun X (2020) Continual learning classification method with new labeled data based on the artificial immune system. Appl Soft Comput 94:106423. https://doi.org/10.1016/j.asoc.2020.106423

    Article  Google Scholar 

  42. Li D, Liu SL, Gao FR, Sun X (2021) Continual learning classification method with constant-sized memory cells based on artificial immune system. Knowl-Based Syst 213:106673. https://doi.org/10.1016/j.knosys.2020.106673

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the National Natural Science Foundation of China (Grant No. 52075310, 51575331).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Li.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Liu, S., Gao, F. et al. Continual learning classification method and its application to equipment fault diagnosis. Appl Intell 52, 858–874 (2022). https://doi.org/10.1007/s10489-021-02455-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-021-02455-7

Keywords

Navigation