Skip to main content

Advertisement

Log in

Soil carbon of hedgerows and ‘ghost’ hedgerows

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

Agroforestry can contribute significantly to carbon sequestration in agricultural lands, as carbon accumulates both in tree biomass and the soil. One of the oldest, yet declining, forms of agroforestry in Europe are hedgerow-bordered fields. An analysis of historical maps of our study area in Belgium shows that 70% of the hedgerow network was cleared since 1960, creating a large number of ‘ghost’ hedgerows. We selected arable fields next to hedgerows, 'ghost' hedgerows and grass strips to study how hedgerow trees influence SOC stocks and how much of these are still present after hedgerow clearing. SOC stocks to a depth of 23 cm reached up to 81.7 ± 28.8 Mg C ha−1 in hedgerows, storing a considerably larger amount of soil carbon compared to grass strips (56.6 ± 14.5 Mg C ha−1). These built-up stocks were completely gone in 'ghost' hedgerows (57.9 ± 14.1 Mg C ha−1). In the fields adjacent to hedgerows, SOC stocks were only slightly (and insignificantly) increased compared to stocks in fields with grass strips (56.4 ± 6.3 vs 55.6 ± 5.0 Mg C ha−1) with an exponential decay up to 30 m from the margin. This trend was still limitedly detectable in 'ghost' hedgerowbordered fields, however stocks were not elevated anymore (53.9 ± 6.1 Mg C ha−1). Since 1960, 4 957 ± 1 664 Mg C from the soil alone were released back into the atmosphere due to hedgerow removal in the study area. The implementation of a strict hedgerow conservation policy would thus be a highly effective climate change mitigation measure in agricultural landscapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Source topographical map and Aerial photographs: Geografische Data-Infrastructuur and Google Satellite (2018), respectively

Similar content being viewed by others

Code availability

Not applicable.

Availability of data and material

Access to the data used and analysed in this study will be given by the authors upon personal request.

References

  • Aertsens J, De Nocker L, Gobin A (2013) Valuing the carbon sequestration potential for European agriculture. Land Use Policy 31:584–594

    Article  Google Scholar 

  • Albrecht A, Kandji ST (2003) Carbon sequestration in tropical agroforestry systems. Agric Ecosyst Environ 99:15–27

    Article  CAS  Google Scholar 

  • Anderson SH, Udawatta RP, Seobi T, Garrett HE (2009) Soil water content and infiltration in agroforestry buffer strips. Agroforest Syst 75:5–16

    Article  Google Scholar 

  • Arets EJMM, van der Kolk JWH, Hengeveld GM, Lesschen JP, Kramer H, Kuikman PJ, Schelhaas MJ (2020) Greenhouse gas reporting of the LULUCF sector in the Netherlands. Methodological background, update 2020. WOt Technical report 168. Statutory Research Tasks Unit for Nature & the Environment (WOT Natuur & Milieu), Wageningen UR, Wageningen. https://edepot.wur.nl/517340

  • Baltensperger BH (1987) Hedgerow distribution and removal in nonforested regions of the Midwest. J Soil Water Conserv 42:60–64

    Google Scholar 

  • Bárcena TG, Gundersen P, Vesterdal L (2014) Afforestation effects on SOC in former cropland: oak and spruce chronosequences resampled after 13 years. Glob Chang Biol 20:2938–2952

    Article  PubMed  Google Scholar 

  • Barton K (2019) MuMIn: Multi-Model Inference. R package version 1.43.6. https://CRAN.R-project.org/package=MuMIn

  • Baudry J, Bunce RGH, Burel F (2000) Hedgerows: an international perspective on their origin, function and management. J Environ Manage 60:7–22

    Article  Google Scholar 

  • Bazin P, Schmutz T (1994) La mise en place de nos bocages en Europe et leur déclin. Revue forestrière française, AgroParisTech, Nancy, France

    Book  Google Scholar 

  • Black K, Green S, Mullooley G, Poveda A (2012) Carbon Sequestration by Hedgerows in the Irish Landscape. Towards a national hedgerow biomass inventory for the LULUCF sector using LiDAR Remote Sensing. Climate Change Research Programme (CCRP) 2007–2013 Report Series No. 32. Environmental Protection Agency (EPA), Wexford, Ireland

  • Bot A and Benites J (2005) The importance of soil organic matter. FAO soils bulletin 80. Publishing Management Service, Information Division, FAO, Italy

  • Brandle JR, Hodges L, Zhou XH (2004) Windbreaks in North American agricultural systems. Agrofor Syst 61:65–78

    Google Scholar 

  • Buis J (1985) Historia Forestis: Nederlandse bosgeschiedenis. HES Uitgevers, Utrecht

    Google Scholar 

  • Burny J, Mennen V, Vanlook W (2013) Koersel. Van Neusenberg tot Spiekelspade: het historische landschap in het licht van de plaatsnamen. Natuurpunt, Beringen, Belgium

  • Cardinael R, Chevallier T, Barthès BG, Saby NPA, Parent T, Dupraz C, Bernoux M, Chenu C (2015) Impact of alley cropping agroforestry on stocks, forms and spatial distribution of soil organic carbon—a case study in a Mediterranean context. Geoderma 259–260:288–299

    Article  CAS  Google Scholar 

  • Cardinael R, Chevallier T, Cambou A, Béral C, Barthès BG, Dupraz C, Durand C, Kouakoua E, Chenu C (2017) Increased soil organic carbon stocks under agroforestry: a survey of six different sites in France. Agr Ecosyst Environ 236:243–255

    Article  Google Scholar 

  • Cardinael R, Guenet B, Chevallier T, Dupraz C, Cozzi T, Chenu C (2018) High organic inputs explain shallow and deep SOC storage in a long-term agroforestry system—combining experimental and modeling approaches. Biogeosciences 15:297–317

    Article  CAS  Google Scholar 

  • Carlyle JC (1993) Organic carbon in forested sandy soils: properties, processes, and the impact of forest management. NZ J Forest Sci 23(3):390–402

    Google Scholar 

  • Commission E (2013) Regulation (EU) No 1305/2013 on support for rural development by the European Agricultural Fund for Rural Development (EAFRD) and repealing Council Regulation (EC) No 1698/2005. Off J Eur Union 1698:487–548

    Google Scholar 

  • Dainese M, Luna DI, Sitzia T, Marini L (2015) Testing scale-dependent effects of seminatural habitats on farmland biodiversity. Ecol Appl 25(6):1681–1690

    Article  PubMed  Google Scholar 

  • Dal Ferro N, Piccoli I, Berti A, Polese R, Morari F (2020) Organic carbon storage potential in deep agricultural soil layers: Evidence from long-term experiments in northeast Italy. Agr Ecosyst Environ 300:106967

    Article  CAS  Google Scholar 

  • De Stefano A, Jacobson MG (2018) Soil carbon sequestration in agroforestry systems: a meta-analysis. Agroforest Syst 92:285–299

    Google Scholar 

  • Dignac M-F, Derrien D, Barré P, Barot S et al (2017) Increasing soil carbon storage: mechanisms, effects of agricultural practices and proxies. A review Agron Sustain Dev 37:14

    Article  CAS  Google Scholar 

  • England JR, Paul KI, Cunningham SC, Madhavan D, Baker TG, Read Z, Wilson BR, Cavagnaro TC, Lewis T, Perring MP, Herrmann T, Polglase PJ (2016) Previous land use and climate influence differences in soil organic carbon following reforestation of agricultural land with mixed-species environmental plantings. Agric Ecosyst Environ 227:61–72

    Article  Google Scholar 

  • ESRI (2018) ArcGIS Desktop: Release 10.6.1 Redlands. Environmental Systems Research Institute, CA

  • Falloon P, Powlson D, Smith P (2004) Managing field margins for biodiversity and carbon sequestration: a Great Britain case study. Soil Use and Manag 20:240–247

    Article  Google Scholar 

  • Follain S, Walter C, Legout A, Lemercier B, Dutin G (2007) Induced effects of hedgerow networks on soil organic carbon storage within an agricultural landscape. Geoderma 142:80–95

    Article  CAS  Google Scholar 

  • Ford H, Healey JR, Webb B, Pagella TF, Smith AR (2019) How do hedgerows influence soil organic carbon stock in livestock-grazed pasture? Soil Use Manag. https://doi.org/10.1111/sum.12517

    Article  Google Scholar 

  • Google Satellite (2018) Map data ©2018 Google

  • Hart K, Allen B, Keenleyside C, Nanni S, Maréchal A, Paquel K, Nesbit M, Ziemann J (2017) Research for agri committee - the consequences of climate change for EU agriculture. Follow-Up To the COP21 - Un Paris Climate Change Conference

  • Hermy M and De Blust G (1997) Punten en lijnen in het landschap. Stichting Leefmilieu, Schuyt & co, Van de Wiele, Natuurreservaten, WWF, Instituut voor Natuurbehoud

  • Hibbard KA, Schimel DS, Archer S, Ojima DS, Parton W (2003) Grassland to woodland transitions: integrating changes in landscape structure and biogeochmistry. Ecol Appl 13:911–926

    Article  Google Scholar 

  • Holden J, Grayson RP, Berdeni D, Bird S, Chapman PJ, Edmondson JL, Firbank LG, Helgason T, Hodson ME, Hunt SFP et al (2019) The role of hedgerows in soil functioning within agricultural landscapes. Agric Ecosyst Environ 273:1–12

    Article  Google Scholar 

  • Hossain MF, Chen W, Zhang Y (2015) Bulk density of mineral and organic soils in the Canada’s arctic and sub-arctic. Information processing in agriculture 2:183–190

    Article  Google Scholar 

  • IOK (2020) Intercommunale Ontwikkelingsmaatschappij voor de Kempen. Url: iok.be

  • IPCC (1990) In: Houghton JT, Jenkins GJ, Ephraums JJ (Eds.), Climate Change. Cambridge University Press, Cambridge

  • IPCC (1996) Climate change 1995 The science of climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jacobson MC, Charlson RJ, Rodhe H, Orians GH (2000) Earth system science: from biogeochemical cycles to global change. International Geophysics Series72 New York: Academic Press

  • Jobbágy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436

    Article  Google Scholar 

  • Kay S, Rega C, Moreno G, den Herder M, Palma JHN, Borek R, Crous-Duran J, Freese D, Giannitsopoulos M et al (2019) Agroforestry creates carbon sinks whilst enhancing the environment in agricultural landscapes in Europe. Land Use Policy 83:581–593

    Article  Google Scholar 

  • Kint V, Geudens G, den Ouden J (2010) Bos op arme gronden. In: den Ouden J, Muys B, Mohren F, Verheyen K (eds.) Bosecologie en bosbeheer. Acco[s.l.]

  • KMI (2019) Koninklijk Meteorologisch Instituut van België, Klimaatatlas. https://www.meteo.be/nl/klimaat/klimaatatlas

  • Lal R (2004a) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627

    Article  CAS  PubMed  Google Scholar 

  • Lal R (2004b) Soil carbon sequestration in natural and managed tropical forest ecosystems. J Sustain For 21:1–30

    Article  Google Scholar 

  • Lei T, Feng J, Zheng C, Li S, Wang Y, Wu Z, Lu J, Kan G, Shao C, Jia J, Cheng H (2020) Review of drought impacts on carbon cycling in grassland ecosystems. Earth Sci, Front. https://doi.org/10.1007/s11707-019-0778-4

    Book  Google Scholar 

  • Lenka NK, Dass A, Sudhishri S, Patnaik US (2012) Soil carbon sequestration and erosion control potential of hedgerow and grass filter strips in sloping agricultural lands of eastern India. Agric Ecosyst Environ 158:31–40

    Article  Google Scholar 

  • Litza K, Diekmann M (2020) The effect of hedgerow density on habitat quality distorts species-area relationships and the analysis of extinction debts in hedgerows. Landscape Ecol. https://doi.org/10.1007/s10980-020-01009-5

    Article  Google Scholar 

  • Marshall EJP, Moonen AC (2002) Field margins in northern Europe: their functions and interactions with agriculture. Agric Ecosyst Environ 89:5–21

    Article  Google Scholar 

  • Matocha J, Schroth G, Hills T, Hole D (2012) Integrating climate change adaptation and mitigation through agroforestry and ecosystem conservation. In: Nair PKR, Garrity D (eds) Agroforestry—the future of global land use. Springer, Dordrecht, pp 105–126

    Chapter  Google Scholar 

  • Monreal NLR, López-Vicente M, Romero MEN, Ojanguren R, Adán JAL, Errea P, Bellido NP (2018) Catchment based hydrology under post farmland abandonment scenarios. Cuadernos Invest. Geogr./Geogr. Res Lett 44:503–534

    Google Scholar 

  • Montagnini F, Nair PKR (2004) Carbon sequestration: an underexploited environmental benefit of agroforestry systems. Agrofor Syst 61(2):281–295

    Google Scholar 

  • Nair PKR, Kumar BM, Nair VD (2009) Agroforestry as a strategy for carbon sequestration. J Plant Nutr Soil Sci 172:10–23

    Article  CAS  Google Scholar 

  • Nair PKR, Nair VD, Kumar BM, Showalter JM (2010) Carbon sequestration in agroforestry systems. In: Sparks DL (ed) Advances in agronomy, vol 108. Academic Press, New York, pp 237–307

    Google Scholar 

  • Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142

    Article  Google Scholar 

  • Pardon P, Reubens B, Reheul D, Mertens J, De Frenne P, Coussement T, Janssens P, Verheyen K (2017) Trees increase soil organic carbon and nutrient availability in temperate agroforestry systems. Agr Ecosyst Environ 247:98–111

    Article  CAS  Google Scholar 

  • Pausch J, Kuzyakov Y (2018) Carbon input by roots into the soil: quantification of rhizodeposition from root to ecosystem scale. Global Change Biol 24:1–12

    Article  Google Scholar 

  • Peichl M, Thevathasan NV, Gordon AM, Huss J, Abohassan RA (2006) Carbon sequestration potentials in temperate treebased intercropping systems, southern Ontario, Canada. Agroforest Syst 66:243–257

    Article  Google Scholar 

  • Pellegrini AF, Ahlström A, Hobbie SE, Reich PB, Nieradzik LP, Staver AC, Jackson RB (2018) Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature 553:194

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2018) _nlme: Linear and Nonlinear Mixed Effects Models_. R package version 3.1–137, <URL: https://CRAN.R-project.org/package=nlme>

  • Poeplau C, Don A, Vesterdal L, Leifeld J, VanWesemael B, Schumacher J, Gensoir A (2011) Temporal dynamics of soil organic carbon after land-use change in the temperate zone–carbon response functions as a model approach. Glob Chang Biol 17:2415–2427

    Article  Google Scholar 

  • Poeplau C, Jacobs A, Don A, Vos C, Schneider F, Wittnebel M, Tiemeyer B, Heidkamp A, Prietz R, Flessa H (2020) Stocks of organic carbon in German agricultural soils—Key results of the first comprehensive inventory. J Plant Nutr Soil Sci 183:665–681

    Article  CAS  Google Scholar 

  • Prentice C, Farquhar G, Fasham M, Goulden M, Heimann M, Jaramillo V, Kheshgi H, Quéré CL, Scholes R, Wallace D (2001) The carbon cycle and atmospheric CO2. In: Houghton et al. (eds) Climate Change 2001: The Scientific Basis: Contribution of WGI to the Third Assessment Report of the IPCC. Cambridge University Press, New York, pp 185–237

  • Prior LD, Paul KI, Davidson NJ, Hovenden MJ, Nichols SC, Bowman DJMA (2015) Evaluating carbon storage in restoration plantings in the Tasmanian Midlands, a highly modified agricultural landscape. Rangel J 37:477–488

    Article  Google Scholar 

  • R Core Team (2019) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • R Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Šálek M, Hula V, Kipson M, Daňková R, Niedobová J, Gamero A (2018) Bringing diversity back to agriculture: Smaller fields and non-crop elements enhance biodiversity in intensively managed arable farmlands. Ecol Ind 90:65–73

    Article  Google Scholar 

  • Sánchez IA, Lassaletta L, McCollin D, Bunce RGH (2010) Agroforest Syst 78:13–25

    Article  Google Scholar 

  • Schlesinger WH, Andrews JA (2000) Soil respiration and the global carbon cycle. Biogeochemistry 48:7–20

    Article  CAS  Google Scholar 

  • Schoeneberger M, Bentrup G, de Gooijer H, Soolanayakanahally R, Sauer T, Brandle J, Zhou X, Current D (2012) Branching out: agroforestry as a climate change mitigation and adaptation tool for agriculture. J Soil Water Conserv 67:128A-136A

    Article  Google Scholar 

  • Sevenant M, Menschaert J, Couvreur M, Ronse A, Antrop M, Geypens M, Hermy M, De Blust G (2002) Ecodistricten: Ruimtelijke eenheden voor gebiedsgericht milieubeleid in Vlaanderen. Deelrapport II: Afbakening van ecodistricten en ecoregio’s: Verklarende teksten. Studieopdracht in het kader van actie 134 van het Vlaams Milieubeleidsplan 1997–2001. In opdracht van het Ministerie van de Vlaamse Gemeenschap, Administratie Milieu, Natuur, Land- en Waterbeheer

  • Shi L, Feng W, Xu J, Kuzyakov Y (2018) Agroforestry systems: meta-analysis of soil carbon stocks, sequestration processes, and future potentials. Land Degrad Dev 29:3886–3897

    Article  Google Scholar 

  • Shorohova E, Kuuluvainen T, Kangur A, Jõgiste K (2009) Natural stand structures, disturbance regimes and successional dynamics in the Eurasian boreal forests: a review with special reference to Russian studies. Ann For Sci 66:201

    Article  Google Scholar 

  • Simonetti G, Francioso O, Dal Ferro N, Nardi S, Berti A, Morari F (2017) Soil porosity in physically separated fractions and its role in SOC protection. J Soils Sediments 17:70–84

    Article  CAS  Google Scholar 

  • Sollins P, Swanston C, Kramer M (2007) Stabilization and destabilization of soil organic matter—a new focus. Biogeochemistry 85:1–7

    Article  Google Scholar 

  • Stavi I, Lal R (2013) Agroforestry and biochar to offset climate change: a review. Agron Sustain Dev 33:81–96

    Article  Google Scholar 

  • Stockmann U, Adams MA, Crawford JW, Field DJ, Henakaarchchi N, Jenkins M et al (2013) The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric Ecosyst Environ 164:80–99

    Article  CAS  Google Scholar 

  • Tavernier R and Maréchal R (1972) Carte des Associations des Sols 1/500.000. NGI, Brussels

  • UNFCCC (2015) Paris agreement, conference of the parties on its twenty-first session. FCCC/CP/2015/L.9/Rev.1

  • Van Den Berge S (2021) Role of hedgerow systems for biodiversity and ecosystem services in agricultural landscapes. PhD thesis, Ghent University, Ghent, Belgium

  • Van Den Berge S, Baeten L, Vanhellemont M, Ampoorter E, Proesmans W, Eeraerts M, Hermy M, Smagghe G, Vermeulen I, Verheyen K (2018) Species diversity, pollinator resource value and edibility potential of woody networks in the countryside in northern Belgium. Agric Ecosyst Environ 259:119–126

    Article  Google Scholar 

  • Van Den Berge S, Vangansbeke P, Calders K, Vanneste T, Baeten L, Verbeeck H, Krishna Moorthy SP, Verheyen K (2021) Biomass Expansion Factors for Hedgerow-Grown Trees Derived from Terrestrial LiDAR. Res, Bioenerg. https://doi.org/10.1007/s12155-021-10250-y

    Book  Google Scholar 

  • Van Elst Ph (1916) Landbouwontginningen in de Kempen. Drukkerij L, Braeckmans, Brecht

    Google Scholar 

  • Vanneste T, Govaert S, Spicher F, Brunet J, Cousins SAO, Decocq G, Diekmann M et al (2020a) Contrasting microclimates among hedgerows and woodlands across temperate Europe. Agric For Meteorol 281:107818

    Article  Google Scholar 

  • Vanneste T, Govaert S, De Kesel W, Van Den Berge S, Vangansbeke P, Meeussen C, Brunet J et al (2020b) Plant diversity in hedgerows and road verges across Europe. J Appl Ecol 57(7):1244–1257

    Article  Google Scholar 

  • Verboven H, Verheyen K, Hermy M (2004) Bos en hei in het Land van Turnhout. Een bijdrage tot de historische ecologie. Eindrapport in opdracht van het Ministerie van de Vlaamse gemeenschap, Monumenten & Landschappen en het Vlaams Instuut voor het Onroerend Erfgoed

  • Vermeulen SJ, Campbell BM, Ingram JSI (2012) Climate change and food systems. Annu Rev Environ Resour 37:195–222. https://doi.org/10.1146/annurev-environ-020411-130608

    Article  Google Scholar 

  • Wickham H (2016) Ggplot2: elegant graphics for data analysis. Springer-Verlag, New York

    Book  Google Scholar 

  • Wiesmeier M, Lungu M, Cerbari V, Boincean B, Hübner R, Kögel-Knabner I (2018) Rebuilding soil carbon in degraded steppe soils of Eastern Europe: the importance of windbreaks and improved cropland management. Land Degrad Dev 29:875–883. https://doi.org/10.1002/ldr.2902

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Paul Pardon, Robbe De Beelde, Kris Ceunen and Luc Willems for their help during the fieldwork and to all the farmers who allowed us to take soil samples in their fields. We also thank Inge Vermeulen and Dirk Vandenbussche for providing access to the historical maps of Turnhout and ArcMap, Luc Willems and Greet De bruyn for conducting the chemical analyses of the soil samples, and Jonathan Janssens for layouting the figures.

Funding

Financial support was provided by the European Research Council to KV through the PASTFORWARD project (ERC Consolidator Grant no. 614839) and to PV through the FORMICA project (ERC Starting Grant no. 757833). TV was supported by the Special Research Fund (BOF) from Ghent University (01N02817).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Sanne Van Den Berge, Pieter Vangansbeke, Thomas Vanneste and Fien Vos, under the supervision of Lander Baeten and Kris Verheyen. The first draft of the manuscript was written by Sanne Van Den Berge and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sanne Van Den Berge.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 92.0 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Den Berge, S., Vangansbeke, P., Baeten, L. et al. Soil carbon of hedgerows and ‘ghost’ hedgerows. Agroforest Syst 95, 1087–1103 (2021). https://doi.org/10.1007/s10457-021-00634-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-021-00634-6

Keywords

Navigation